Matemática, perguntado por dudubrendaw, 1 ano atrás

qual o imagem da função y = 2 + sen x ? e y = 5 cos x ?

Soluções para a tarefa

Respondido por Lukyo
0
Para as funções seno e cosseno de um ângulo \alpha qualquer, temos

\bullet\;\;-1\leq \mathrm{sen\,}\alpha\leq 1\\ \\ \bullet\;\;-1\leq \cos \alpha\leq 1


a) 
y=2+\mathrm{sen\,}x

-1\leq \mathrm{sen\,}x\leq 1


Somando 2 a todos os membros da dupla desigualdade acima, temos

2-1\leq 2+\mathrm{sen\,}x\leq 2+1\\ \\ 1 \leq 2+\mathrm{sen\,}x\leq 3\\ \\ 1 \leq y \leq 3


Logo, o conjunto imagem desta função é

\left\{y \in \mathbb{R}\left|\,1 \leq y \leq 3 \right. \right \}

ou usando a notação de intervalos para representar este conjunto,

\left[\,1,\,3\, \right ]


b) 
y=5\cos x

-1 \leq \cos x \leq 1


Multiplicando todos os membros da dupla desigualdade acima por 5, temos

5\cdot \left(-1 \right ) \leq 5\cos x \leq 5\cdot 1\\ \\ -5\leq 5\cos x \leq 5\\ \\ -5 \leq y \leq 5


Logo, o conjunto imagem desta função é

\left\{y \in \mathbb{R}\left|\,-5 \leq y \leq 5\right. \right\}

ou usando a notação de intervalos para representar este conjunto,

\left[\,-5,\,5\, \right ]

Perguntas interessantes