Qual o décimo termo da PA (3, 12,...)?
Soluções para a tarefa
Saudações, acadêmico.
Neste exercício, utilizaremos a fórmula do termo geral de uma P.A. Vejamos-a:
Onde:
- é o primeiro termo da progressão.
- é a razão da progressão aritmética.
- é o número do termo da progressão aritmética.
- é o termo desconhecido da progressão aritmética.
Como não temos a razão da progressão aritmética dada, a calcularemos, onde tem sua fórmula dada por:
Aplicando no exercício:
Agora com a razão, podemos retirar as informações para facilitar os cálculos. Teremos então que:
Agora podemos descobrir o termo desconhecido da progressão a qual o exercício pede. Acompanhe o desenvolvimento:
Temos então nossa resposta:
Resposta: O décimo termo da P.A dada por (3, 12,...) é o número 84.
Espero ter lhe ajudado!
Olá! Segue a resposta com algumas explicações.
(I)Interpretação dos problemas:
Da sequência (3, 12,...), tem-se:
a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;
b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:3
c)décimo termo (a₁₀): ?
d)número de termos (n): 10
- Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 10ª), equivalente ao número de termos.
e)Embora não se saiba o valor do décimo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem, afastam-se do zero, para a direita, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e os termos solicitados igualmente serão maiores que zero.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 12 - 3 ⇒
r = 9 (Razão positiva, conforme prenunciado no item e acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o centésimo termo:
an = a₁ + (n - 1) . r ⇒
a₁₀ = a₁ + (n - 1) . (r) ⇒
a₁₀ = 3 + (10 - 1) . (9) ⇒
a₁₀ = 3 + (9) . (9) ⇒ (Veja a Observação 2.)
a₁₀ = 3 + 81 ⇒
a₁₀ = 84
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).
Resposta: O décimo termo da P.A.(3, 12,...) é 84.
====================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₁₀ = 84 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o décimo termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₁₀ = a₁ + (n - 1) . (r) ⇒
84 = a₁ + (10 - 1) . (9) ⇒
84 = a₁ + (9) . (9) ⇒
84 = a₁ + 81 ⇒ (Passa-se 81 ao 1º membro e altera-se o sinal.)
84 - 81 = a₁ ⇒
3 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 3 (Provado que a₁₀ = 84.)
→Veja outras tarefas relacionadas à determinação de termos em progressão aritmética e resolvidas por mim:
https://brainly.com.br/tarefa/27912579
https://brainly.com.br/tarefa/26624276
https://brainly.com.br/tarefa/17297786
https://brainly.com.br/tarefa/19416145
https://brainly.com.br/tarefa/7064040
https://brainly.com.br/tarefa/27943696
brainly.com.br/tarefa/10404787
brainly.com.br/tarefa/14324038
brainly.com.br/tarefa/27943954
brainly.com.br/tarefa/27678552