Matemática, perguntado por ml3442792, 1 ano atrás

Qual o conjunto de solução da equação 3t/4 - t/3 = -5/6

Soluções para a tarefa

Respondido por tiagochelseaovlwgp
1

Bom, de cara podemos ver que temos frações heterogêneas, então vamos calcular o mmc de todos os denominadores.

mmc(4,3,6) = 12

Após isso, vamos utilizar 12 como novo denominador, porém precisamos calcular um novo numerador, para isso:

1° Dividir o mmc por seu respectivo denomiador.

2° Multiplicar o quociênte da divisão anterior pelo numerador

3° Utilizar o produto da multiplicação anterior como numerador

Vamos lá!

12 ÷ 4 = 3

3 × 3t = 9t

--------------------

12 ÷ 3 = 4

4 × t = 4t

---------------------

12 ÷ 6 = 2

2 × (-5)  = -10

-------------------------

Ok, agora temos:

\frac{9t - 4t = -10}{12}

Como temos o mesmo denominador para ambos, podemos deixar ele de lado.

9t - 4t = - 10

5t = -10

t = -10 ÷ (-5)

t = -2

Agora podemos confirmar, para isto basta repedir o processo, porém vamos substituir t por -2

\frac{3(-2)}{4} - \frac{(-2)}{3} = \frac{-5}{6}

\frac{-6}{4} = \frac{(-2)}{3} = \frac{-5}{6}

Agora, basta fazer o mmc, e repetir todo o processo....

Ao fim teremos:

\frac{-18 - (-8)}{12} = \frac{-5}{6}

\frac{-10}{12} = \frac{-5}{6}

Agora ao fim, temos duas equações equivalente, porém -10/12 é uma fração redutível, logo a equação está em equilibrio e -2 é nossa solução

S = {-2}


Perguntas interessantes