Qual o conceito e objetivo da equação do 2°grau?
Soluções para a tarefa
Respondido por
2
Uma equação do 2° grau é toda e qualquer equação com uma incógnita que é expressa da seguinte forma:
ax2 + bx + c = 0, a ≠ 0
A letra x é a incógnita, e as letras a, b e c são números reais que exercem a função de coeficientes da equação. Apenas o coeficiente a deve ser diferente de zero. Se nenhum dos coeficientes for nulo, dizemos que se trata de uma equação completa; mas se algum dos coeficientes b e c for zero, dizemos que é uma equação incompleta.Quando resolvemos uma equação do 2° grau, podemos encontrar até dois resultados. Esses valores são chamados de raízes da equação. Veremos neste artigo como determinar as raízes de uma equação do 2° grau.Seja a equação do 2° grau completa ou incompleta, podemos utilizar a Fórmula de Bhaskara para encontrar suas raízes. A fórmula de Bhaskara apresenta-se da seguinte forma:Apenas para simplificar a notação, comumente chamamos a expressão dentro da raiz quadrada de delta (∆). Calculando o ∆ separadamente, nós podemos escrever a fórmula de Bhaskara da seguinte forma:Caso o valor de delta seja menor que zero, dizemos que a equação do 2° grau não possui raízes reais. Se o delta for igual a zero, a equação terá duas raízes idênticas. Caso o delta seja maior que zero, a equação do 2° grau terá duas raízes distintas.
ax2 + bx + c = 0, a ≠ 0
A letra x é a incógnita, e as letras a, b e c são números reais que exercem a função de coeficientes da equação. Apenas o coeficiente a deve ser diferente de zero. Se nenhum dos coeficientes for nulo, dizemos que se trata de uma equação completa; mas se algum dos coeficientes b e c for zero, dizemos que é uma equação incompleta.Quando resolvemos uma equação do 2° grau, podemos encontrar até dois resultados. Esses valores são chamados de raízes da equação. Veremos neste artigo como determinar as raízes de uma equação do 2° grau.Seja a equação do 2° grau completa ou incompleta, podemos utilizar a Fórmula de Bhaskara para encontrar suas raízes. A fórmula de Bhaskara apresenta-se da seguinte forma:Apenas para simplificar a notação, comumente chamamos a expressão dentro da raiz quadrada de delta (∆). Calculando o ∆ separadamente, nós podemos escrever a fórmula de Bhaskara da seguinte forma:Caso o valor de delta seja menor que zero, dizemos que a equação do 2° grau não possui raízes reais. Se o delta for igual a zero, a equação terá duas raízes idênticas. Caso o delta seja maior que zero, a equação do 2° grau terá duas raízes distintas.
Perguntas interessantes