Matemática, perguntado por MilesOhayo, 1 ano atrás

Qual número doi apagado na linha de cima do quadro-negro?​

Anexos:

Soluções para a tarefa

Respondido por Vulpliks
2

O exercício te dá dois coeficientes da equaçã​o quadrática e uma das raízes. Com isso conseguimos calcular os valores faltantes.

A equaçã​o quadrática pode ser escrita em funçã​o das raízes:

(x - r_1) \cdot (x - r_2) = 0

Como sabemos que uma raiz é 6:

(x - 6) \cdot (x - r_2) = x^2 - (6+r_2) \cdot x + 6 \cdot r_2 = 0

Mas se perceber, na primeira linha do quadro negro, está escrito 2 \cdor x^2 + ... , então, podemos multiplicar a equação acima por dois dos dois lados da igualdade também:

2 \cdot x^2 - 2 \cdot(6+r_2) \cdot x + 2 \cdot 6 \cdot r_2 = 0

2 \cdot x^2 - (12+2 \cdot r_2) \cdot x + 12 \cdot r_2 = 0

O termo independente no quadro negro é 60, a partir dele encontramos a outra raiz:

12 \cdot r_2 = 60

r_2 = \dfrac{60}{12}

r_2 = 5

Agora, sabendo isso, encontramos o termo faltante da equaçã​o:

K = - (12+2 \cdot r_2) = - (12+2 \cdot 5) = - (12+10) = \boxed{-22}

Perguntas interessantes