Matemática, perguntado por SAMUKA429492, 1 ano atrás

qual e o valor de x nas expressõ
 \frac{1}{4}  \sqrt{48}   +  \frac{1}{2}  \sqrt{243}  -  \frac{1}{6 }  \sqrt{12}

Soluções para a tarefa

Respondido por dougOcara
1

Resposta:

\frac{31}{6}\sqrt{3}

Explicação passo-a-passo:

Primeiro decompõe os número dentro das raízes:

48=2^{4}.3\\243=3^{5}\\12=2^{2}.3\\\\\\

\frac{1}{4}\sqrt{48}+\frac{1}{2}\sqrt{243}-\frac{1}{6}\sqrt{12}=\frac{1}{4}\sqrt{2^{4}.3}+\frac{1}{2} \sqrt{3^{5}}-\frac{1}{6}\sqrt{2^2.3}=\\\\\frac{1}{4}(2^{4}.3)^\frac{1}{2}+\frac{1}{2}(3^{5})^\frac{1}{2}-\frac{1}{6}(2^2.3)^\frac{1}{2}=\\\\\frac{1}{4}(2^{\frac{4.1}{2}}.3^\frac{1}{2})+\frac{1}{2}(3)^\frac{5.1}{2}-\frac{1}{6}.2^\frac{2.1}{2}.3^\frac{1}{2}=\\\\

\frac{1}{4}(2^{2}.3^\frac{1}{2})+\frac{1}{2}(3^\frac{4}{2}3^{\frac{1}{2}})-\frac{1}{6}(2.3^\frac{1}{2})=\\\\3^\frac{1}{2}.[\frac{1}{4}(2^{2})+\frac{1}{2}(3^{2})-\frac{1}{6}(2)]=\\\\3^\frac{1}{2}.[\frac{4}{4}+\frac{9}{2}-\frac{2}{6}]=\\\\3^\frac{1}{2}.[1+\frac{9}{2}-\frac{1}{3}]=\\\\3^\frac{1}{2}.[\frac{6.1+3.9-2.1}{6}]=\\\\3^\frac{1}{2}.[\frac{31}{6}]=\\\\\frac{31}{6}\sqrt{3}

Propriedades:

(a^{m})^{n}=a^{m.n}\\\\\sqrt[n]{x^m} =x^{\frac{m}{n} }\\\\a^{m}a^{n}=a^{m+n}


SAMUKA429492: salvo minha vida kkkj
dougOcara: Me dê umas estrelinhas....valeu
megamente1000: ,ssgjd
erreinessaaula: :-(
erreinessaaula: :-)
erreinessaaula: Errei a carinha
Perguntas interessantes