Matemática, perguntado por denisonviegas066, 6 meses atrás

Qual é o resto da divisão de (r*+1). (3 - 21 - 21") por 1 - 1? ​

Soluções para a tarefa

Respondido por esterzinhahelena10
0

Explicação passo-a-passo:

Vamos encontrar o que foi pedido utilizando o algoritmo da divisão:

   x2 - 5x + 6    |x² - 7x + 12

- x² + 7x - 12     1

          2x - 6

Portanto, o quociente é 1 e o resto é 2x – 6.

para encontrar o valor de s(x), vamos utilizar o algoritmo da divisão, isto é:

dividendo  |  divisor    ↔ quociente * divisor + resto = dividendo

   resto       quociente

Nesse caso, o dividendo é o polinômio p(x), e o divisor é o q(x). Então vamos procurar um valor para o quociente tal que, quando este for multiplicado pelo divisor, resulte no termo de maior grau do dividendo ou no mais próximo dele. Lembrando que colocaremos esse resultado embaixo do dividendo, com o sinal oposto. Veja como ficará:

  x4 - 13x³ + 30x2 + 4x - 40    | x² - 9x - 10

- x4 + 9x³ + 10x²                      x² - 4x + 4

   0 - 4x³ + 40x² + 4x

        4x³ - 36x² - 40x

           0 + 4x² - 36x - 40

              - 4x² + 36x + 40

                                   0

Portanto, caso quiséssemos conferir, basta confirmar que quociente * divisor + resto = dividendo, ou seja, mostrar que (x2 - 4x + 4) * (x2 - 9x - 10) + 0 = x4 - 13x3 + 30x2 + 4x - 40, utilizando para isso a propriedade distributiva da multiplicação e agrupando termos semelhantes.

Perguntas interessantes