Qual é o polígono que tem 104 diagonais? Resposta passo a passo.
Soluções para a tarefa
Respondido por
3
Coeficientes: a = 1, b = -3 e c = -208
Resposta: hexadecágono
Espero ter ajudado.
Bons estudos! :)
Respondido por
1
Resolução da questão, vejamos:
![\faxmachine \faxmachine](https://tex.z-dn.net/?f=%5Cfaxmachine)
Vamos substituir isso nesta fórmula:
![\mathsf{D=\dfrac{n~\cdot~(n-3)}{2}}}} \mathsf{D=\dfrac{n~\cdot~(n-3)}{2}}}}](https://tex.z-dn.net/?f=%5Cmathsf%7BD%3D%5Cdfrac%7Bn%7E%5Ccdot%7E%28n-3%29%7D%7B2%7D%7D%7D%7D)
Observe:
![\mathsf{D=\dfrac{n~\cdot~(n-3)}{2}}}\\\\\\\\ \mathsf{104=\dfrac{n~\cdot~(n-3)}{2}}}}\\\\\\\\ \mathsf{208=n^{2}-3n}}}\\\\\\\\ \mathsf{n^{2}-3n-208=0}}} \mathsf{D=\dfrac{n~\cdot~(n-3)}{2}}}\\\\\\\\ \mathsf{104=\dfrac{n~\cdot~(n-3)}{2}}}}\\\\\\\\ \mathsf{208=n^{2}-3n}}}\\\\\\\\ \mathsf{n^{2}-3n-208=0}}}](https://tex.z-dn.net/?f=%5Cmathsf%7BD%3D%5Cdfrac%7Bn%7E%5Ccdot%7E%28n-3%29%7D%7B2%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B104%3D%5Cdfrac%7Bn%7E%5Ccdot%7E%28n-3%29%7D%7B2%7D%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B208%3Dn%5E%7B2%7D-3n%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bn%5E%7B2%7D-3n-208%3D0%7D%7D%7D)
Agora vamos resolver essa equação do segundo grau, observemos:
![\mathsf{n=-b~\pm~\dfrac{\sqrt{b^{2}-4~\cdot~a~\cdot~c}}{2~\cdot~a}}}}~~\to\nathsf{n^{2}-3n-208=0}}\\\\\\\\ \mathsf{n=3~\pm~\dfrac{\sqrt{(-3)^{2}-4~\cdot~1~\cdot~(-208)}}{2~\cdot~1}}}}\\\\\\\\ \mathsf{n=3~\pm~\dfrac{\sqrt{9+832}}{2}}\\\\\\\\ \mathsf{n=3~\pm~\dfrac{\sqrt{841}}{2}}}\\\\\\\\ \mathsf{n'=\dfrac{3+29}{2}}}~=>~\Large\boxed{\boxed{\boxe{\mathsf{n'=16}}}}}}}}}\\\\\\\\ \mathsf{n''=\dfrac{3-29}{2}}}~=>\Large\boxed{\boxed{\mathsf{n"=-13.}}}}}}}} \mathsf{n=-b~\pm~\dfrac{\sqrt{b^{2}-4~\cdot~a~\cdot~c}}{2~\cdot~a}}}}~~\to\nathsf{n^{2}-3n-208=0}}\\\\\\\\ \mathsf{n=3~\pm~\dfrac{\sqrt{(-3)^{2}-4~\cdot~1~\cdot~(-208)}}{2~\cdot~1}}}}\\\\\\\\ \mathsf{n=3~\pm~\dfrac{\sqrt{9+832}}{2}}\\\\\\\\ \mathsf{n=3~\pm~\dfrac{\sqrt{841}}{2}}}\\\\\\\\ \mathsf{n'=\dfrac{3+29}{2}}}~=>~\Large\boxed{\boxed{\boxe{\mathsf{n'=16}}}}}}}}}\\\\\\\\ \mathsf{n''=\dfrac{3-29}{2}}}~=>\Large\boxed{\boxed{\mathsf{n"=-13.}}}}}}}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bn%3D-b%7E%5Cpm%7E%5Cdfrac%7B%5Csqrt%7Bb%5E%7B2%7D-4%7E%5Ccdot%7Ea%7E%5Ccdot%7Ec%7D%7D%7B2%7E%5Ccdot%7Ea%7D%7D%7D%7D%7E%7E%5Cto%5Cnathsf%7Bn%5E%7B2%7D-3n-208%3D0%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bn%3D3%7E%5Cpm%7E%5Cdfrac%7B%5Csqrt%7B%28-3%29%5E%7B2%7D-4%7E%5Ccdot%7E1%7E%5Ccdot%7E%28-208%29%7D%7D%7B2%7E%5Ccdot%7E1%7D%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bn%3D3%7E%5Cpm%7E%5Cdfrac%7B%5Csqrt%7B9%2B832%7D%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bn%3D3%7E%5Cpm%7E%5Cdfrac%7B%5Csqrt%7B841%7D%7D%7B2%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bn%27%3D%5Cdfrac%7B3%2B29%7D%7B2%7D%7D%7D%7E%3D%26gt%3B%7E%5CLarge%5Cboxed%7B%5Cboxed%7B%5Cboxe%7B%5Cmathsf%7Bn%27%3D16%7D%7D%7D%7D%7D%7D%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bn%27%27%3D%5Cdfrac%7B3-29%7D%7B2%7D%7D%7D%7E%3D%26gt%3B%5CLarge%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7Bn%22%3D-13.%7D%7D%7D%7D%7D%7D%7D%7D)
Ou seja, esse polígono é o Hexadecágono.
Espero que te ajude (^.^)
Vamos substituir isso nesta fórmula:
Observe:
Agora vamos resolver essa equação do segundo grau, observemos:
Ou seja, esse polígono é o Hexadecágono.
Espero que te ajude (^.^)
Perguntas interessantes