Matemática, perguntado por manuu656, 1 ano atrás

Qual é o 20º termo do PA (2,8..)?

Soluções para a tarefa

Respondido por LuanaSC8
8
 PA (2,8...)\\\\\\ a_1=2\\ r=8-2\to 6\\ n=20\\ a_n=a_{20}=?\\\\\\ a_n=a_1+(n-1).r\\\\\\ a_{20}=2+(20-1).6\to \\\\a_{20}=2+19.6\to \\\\a_{20}=2+114\to\\\\ \boxed{a_{20}=116}
Respondido por viniciusszillo
2

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da P.A. (2, 8,...), tem-se:

a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;

b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:2

c)vigésimo termo (a₂₀): ?

d)número de termos (n): 20 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 20ª), equivalente ao número de termos.)

e)Embora não se saiba o valor do vigésimo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos sempre crescem, afastam-se do zero, particularmente à sua direita, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒  

r = 8 - 2 ⇒

r = 6   (Razão positiva, conforme prenunciado no item e acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o vigésimo termo:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

a₂₀ = 2 + (20 - 1) . (6) ⇒

a₂₀ = 2 + (19) . (6) ⇒         (Veja a Observação 2.)

a₂₀ = 2 + 114 ⇒

a₂₀ = 116

Observação 2:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).

Resposta: O 20º termo da P.A.(2, 8,...) é 116.

=======================================================  

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₂₀ = 116 na fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o vigésimo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

116 = a₁ + (20 - 1) . (6) ⇒

116 = a₁ + (19) . (6) ⇒

116 = a₁ + 114 ⇒    (Passa-se 114 ao 1º membro e altera-se o sinal.)

116 - 114 = a₁ ⇒  

2 = a₁ ⇔               (O símbolo ⇔ significa "equivale a".)

a₁ = 2                    (Provado que a₂₀ = 116.)

→Veja outras tarefas relacionadas a cálculo de termos em progressão aritmética e resolvidas por mim:

https://brainly.com.br/tarefa/3928952

brainly.com.br/tarefa/25959088

brainly.com.br/tarefa/2835263

brainly.com.br/tarefa/2603139

brainly.com.br/tarefa/8896775

brainly.com.br/tarefa/4138811

brainly.com.br/tarefa/25855791

brainly.com.br/tarefa/25888655

brainly.com.br/tarefa/2863337

brainly.com.br/tarefa/4081079

brainly.com.br/tarefa/3596616

brainly.com.br/tarefa/458192

Perguntas interessantes