Matemática, perguntado por SamanthaArmy30, 1 ano atrás

qual e a raiz quadrada de 957

Soluções para a tarefa

Respondido por graziela2018trindade
1

Resposta:

A raiz quadrada de 957 é 30.93541659651604.

Ou

√957 = 30.93541659651604

Explicação passo-a-passo:

Neste caso, vamos usar o 'Método Babilônico' para obter a raiz quadrada de qualquer número positivo.

Passo 1:

Divida o número (957) por 2 para obter a primeira aproximação para a raiz quadrada.

Primeira aproximação = 957/2 = 478.5.

Passo 2:

Divida 957 pelo resultado obtido no passo anterior. d = 957/478.5 = 2.

Tire a média aritmética de (d) e o valor obtido no passo 1: (2 + 478.5)/2 = 240.25 (nova aproximação).

Erro = nova aproximação - valor anterior = 478.5 - 240.25 = 238.25.

238.25 > 0.01. Como o erro > exatidão, repetimos este passo mais uma vez.

Passo 3:

Divida 957 pelo resultado obtido no passo anterior. d = 957/240.25 = 3.9833506764.

Tire a média aritmética de (d) e o valor obtido no passo 2: (3.9833506764 + 240.25)/2 = 122.1166753382 (nova aproximação).

Erro = nova aproximação - valor anterior = 240.25 - 122.1166753382 = 118.1333246618.

118.1333246618 > 0.01. Como o erro > exatidão, repetimos este passo mais uma vez.

Passo 4:

Divida 957 pelo resultado obtido no passo anterior. d = 957/122.1166753382 = 7.8367675614.

Tire a média aritmética de (d) e o valor obtido no passo 3: (7.8367675614 + 122.1166753382)/2 = 64.9767214498 (nova aproximação).

Erro = nova aproximação - valor anterior = 122.1166753382 - 64.9767214498 = 57.1399538884.

57.1399538884 > 0.01. Como o erro > exatidão, repetimos este passo mais uma vez.

Passo 5:

Divida 957 pelo resultado obtido no passo anterior. d = 957/64.9767214498 = 14.7283516103.

Tire a média aritmética de (d) e o valor obtido no passo 4: (14.7283516103 + 64.9767214498)/2 = 39.85253653 (nova aproximação).

Erro = nova aproximação - valor anterior = 64.9767214498 - 39.85253653 = 25.1241849198.

25.1241849198 > 0.01. Como o erro > exatidão, repetimos este passo mais uma vez.

Passo 6:

Divida 957 pelo resultado obtido no passo anterior. d = 957/39.85253653 = 24.013527954.

Tire a média aritmética de (d) e o valor obtido no passo 5: (24.013527954 + 39.85253653)/2 = 31.933032242 (nova aproximação).

Erro = nova aproximação - valor anterior = 39.85253653 - 31.933032242 = 7.919504288.

7.919504288 > 0.01. Como o erro > exatidão, repetimos este passo mais uma vez.

Passo 7:

Divida 957 pelo resultado obtido no passo anterior. d = 957/31.933032242 = 29.9689673297.

Tire a média aritmética de (d) e o valor obtido no passo 6: (29.9689673297 + 31.933032242)/2 = 30.9509997859 (nova aproximação).

Erro = nova aproximação - valor anterior = 31.933032242 - 30.9509997859 = 0.9820324561.

0.9820324561 > 0.01. Como o erro > exatidão, repetimos este passo mais uma vez.

Passo 8:

Divida 957 pelo resultado obtido no passo anterior. d = 957/30.9509997859 = 30.9198412529.

Tire a média aritmética de (d) e o valor obtido no passo 7: (30.9198412529 + 30.9509997859)/2 = 30.9354205194 (nova aproximação).

Erro = nova aproximação - valor anterior = 30.9509997859 - 30.9354205194 = 0.0155792665.

0.0155792665 > 0.01. Como o erro > exatidão, repetimos este passo mais uma vez.

Passo 9:

Divida 957 pelo resultado obtido no passo anterior. d = 957/30.9354205194 = 30.9354126736.

Tire a média aritmética de (d) e o valor obtido no passo 8: (30.9354126736 + 30.9354205194)/2 = 30.9354165965 (nova aproximação).

Erro = nova aproximação - valor anterior = 30.9354205194 - 30.9354165965 = 0.0000039229.

0.0000039229 <= 0.01. Como o erro <= exatidão, paramos o processo e usamos 30.9354165965 como o valor final para a raiz quadrada.

Logo, podemos dizer que a raiz quadrada de 957 é 30.93541 com um erro menor que 0.01 (na realidade o erro é 0.0000039229). isto significa que as primeiras 5 casas decimais estão corretas


graziela2018trindade: OBS: Existem outras maneiras de calcular raizes quadradas. Este é apenas um deles.
Perguntas interessantes