Matemática, perguntado por yasminepaulobule, 5 meses atrás

Qual é a raiz da seguinte equação x²-x-12=0

Soluções para a tarefa

Respondido por clarahvieira
0

Resposta:

Resposta: As raízes da equação são -3 e 4.

Explicação passo a passo:

(I)Sabendo-se que uma equação do segundo grau é uma igualdade do tipo ax²+bx+c=0 (com a necessariamente diferente de zero, caso contrário, o termo ax²  zeraria e ter-se-ia uma equação do primeiro grau), inicialmente, para melhor entendimento das demais etapas da resolução, pode-se proceder à determinação dos coeficientes por meio de comparação entre a equação fornecida e a forma genérica da equação do segundo grau:

1.x² - 1.x - 12 = 0               (Veja a Observação 1.)

a.x² + b.x  + c  = 0

Coeficientes: a = 1, b = -1, c = (-12)

OBSERVAÇÃO 1: Quando o coeficiente for 1, ele pode ser omitido, pois está subentendido (assim, em vez de 1.x², tem-se apenas x²). No caso de coeficiente -1, pode-se escrever apenas o sinal de negativo (assim, em vez de -1.x, tem-se -x).

(II)Cálculo do discriminante, utilizando-se dos coeficientes:

Δ = b² - 4 . a . c

Δ = (-1)² - 4 . (1) . (-12) ⇒

Δ = 1 - 4 . (1) . (-12) ⇒          

Δ = 1 - 4 . (-12) ⇒             (Veja a Observação 2.)

Δ = 1 + 48 ⇒          

Δ = 49

OBSERVAÇÃO 2: Na parte destacada, aplicou-se a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam em sinal de positivo (+).

→Como o discriminante (Δ) resultou em um valor maior que zero, a equação x²-x-12=0 terá duas raízes diferentes.

(IV)Aplicação da fórmula de Bhaskara (ou fórmula resolutiva de equação do segundo grau), utilizando-se dos coeficientes e do discriminante:

x = (-b ± √Δ) / 2 . a ⇒

x = (-(-1) ± √49) / 2 . (1) ⇒

x = (1 ± 7) / 2 ⇒    

x' = (1 + 7) / 2 = 8/2 ⇒ x' = 4

x'' = (1 - 7) / 2 = -6/2 ⇒ x'' = -3

Perguntas interessantes