qual e a funçao cuja a derivada e dada por f´(x) ln=(2x)+1 e f(1)=0
Soluções para a tarefa
Respondido por
3
É dado o Problema de Valor Inicial (PVI) dado:
![\begin{cases}f'(x)=\ln(2x)+1\\ f(1)=0\end{cases} \begin{cases}f'(x)=\ln(2x)+1\\ f(1)=0\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Df%27%28x%29%3D%5Cln%282x%29%2B1%5C%5C+f%281%29%3D0%5Cend%7Bcases%7D)
Considere que
e que é conhecido um ponto
. Note que a primeira equação do sistema acima é separável. Desenvolvendo-a:
![\displaystyle
f'(x)=\ln(2x)+1\\\\
\dfrac{dy}{dx}=\ln(2x)+1\\\\
\int_{y_0}^y dy=\int_{x_0}^x (\ln(2x)+1)dx\\\\
~[y]_{y_0}^y =\underbrace{\int_{x_0}^x \ln(2x)\,dx}_{I_1}+\int_{x_0}^x \,dx\\\\
~[y]_{y_0}^y =I_1+[x]_{x_0}^x\\\\
y-y_0 =I_1+(x-x_0) \displaystyle
f'(x)=\ln(2x)+1\\\\
\dfrac{dy}{dx}=\ln(2x)+1\\\\
\int_{y_0}^y dy=\int_{x_0}^x (\ln(2x)+1)dx\\\\
~[y]_{y_0}^y =\underbrace{\int_{x_0}^x \ln(2x)\,dx}_{I_1}+\int_{x_0}^x \,dx\\\\
~[y]_{y_0}^y =I_1+[x]_{x_0}^x\\\\
y-y_0 =I_1+(x-x_0)](https://tex.z-dn.net/?f=%5Cdisplaystyle%0Af%27%28x%29%3D%5Cln%282x%29%2B1%5C%5C%5C%5C%0A%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cln%282x%29%2B1%5C%5C%5C%5C%0A%5Cint_%7By_0%7D%5Ey+dy%3D%5Cint_%7Bx_0%7D%5Ex+%28%5Cln%282x%29%2B1%29dx%5C%5C%5C%5C%0A%7E%5By%5D_%7By_0%7D%5Ey+%3D%5Cunderbrace%7B%5Cint_%7Bx_0%7D%5Ex+%5Cln%282x%29%5C%2Cdx%7D_%7BI_1%7D%2B%5Cint_%7Bx_0%7D%5Ex+%5C%2Cdx%5C%5C%5C%5C%0A%7E%5By%5D_%7By_0%7D%5Ey+%3DI_1%2B%5Bx%5D_%7Bx_0%7D%5Ex%5C%5C%5C%5C%0Ay-y_0+%3DI_1%2B%28x-x_0%29)
Vamos calcular a integral
separadamente. Fazendo a substituição
:
![\displaystyle z=\ln(2x)\to 2x=e^z\to 2dx=e^zdz\to dx=\dfrac{1}{2}e^{z}dz\\\\
I_1=\int_{x_0}^x \ln(2x)\,dx\\\\
I_1=\int_{z_0}^z z\cdot\dfrac{1}{2}e^z\,dz=\dfrac{1}{2}\int_{z_0}^z z e^z\,dz \displaystyle z=\ln(2x)\to 2x=e^z\to 2dx=e^zdz\to dx=\dfrac{1}{2}e^{z}dz\\\\
I_1=\int_{x_0}^x \ln(2x)\,dx\\\\
I_1=\int_{z_0}^z z\cdot\dfrac{1}{2}e^z\,dz=\dfrac{1}{2}\int_{z_0}^z z e^z\,dz](https://tex.z-dn.net/?f=%5Cdisplaystyle+z%3D%5Cln%282x%29%5Cto+2x%3De%5Ez%5Cto+2dx%3De%5Ezdz%5Cto+dx%3D%5Cdfrac%7B1%7D%7B2%7De%5E%7Bz%7Ddz%5C%5C%5C%5C%0AI_1%3D%5Cint_%7Bx_0%7D%5Ex+%5Cln%282x%29%5C%2Cdx%5C%5C%5C%5C%0AI_1%3D%5Cint_%7Bz_0%7D%5Ez+z%5Ccdot%5Cdfrac%7B1%7D%7B2%7De%5Ez%5C%2Cdz%3D%5Cdfrac%7B1%7D%7B2%7D%5Cint_%7Bz_0%7D%5Ez+z+e%5Ez%5C%2Cdz)
Realizando a integração por partes:
![\displaystyle
I_1=\dfrac{1}{2}\int_{z_0}^z z e^z\,dz~~~~~~\begin{matrix} z=u\to dz=du\\
dv=e^zdz\to v=e^z\end{matrix}\\\\
I_1=\dfrac{1}{2}\left(uv-\int vdu\right)\\\\
I_1=\dfrac{1}{2}\left(ze^z|_{z_0}^{z}-\int_{z_0}^z e^zdz\right)\\\\
I_1=\dfrac{1}{2}\left((ze^z-z_0e^{z_0})- [e^z]_{z_0}^z\right)\\\\
I_1=\dfrac{1}{2}\left((ze^z-z_0e^{z_0})-(e^z-e^{z_0})\right) \displaystyle
I_1=\dfrac{1}{2}\int_{z_0}^z z e^z\,dz~~~~~~\begin{matrix} z=u\to dz=du\\
dv=e^zdz\to v=e^z\end{matrix}\\\\
I_1=\dfrac{1}{2}\left(uv-\int vdu\right)\\\\
I_1=\dfrac{1}{2}\left(ze^z|_{z_0}^{z}-\int_{z_0}^z e^zdz\right)\\\\
I_1=\dfrac{1}{2}\left((ze^z-z_0e^{z_0})- [e^z]_{z_0}^z\right)\\\\
I_1=\dfrac{1}{2}\left((ze^z-z_0e^{z_0})-(e^z-e^{z_0})\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%0AI_1%3D%5Cdfrac%7B1%7D%7B2%7D%5Cint_%7Bz_0%7D%5Ez+z+e%5Ez%5C%2Cdz%7E%7E%7E%7E%7E%7E%5Cbegin%7Bmatrix%7D+z%3Du%5Cto+dz%3Ddu%5C%5C%0Adv%3De%5Ezdz%5Cto+v%3De%5Ez%5Cend%7Bmatrix%7D%5C%5C%5C%5C%0AI_1%3D%5Cdfrac%7B1%7D%7B2%7D%5Cleft%28uv-%5Cint+vdu%5Cright%29%5C%5C%5C%5C%0AI_1%3D%5Cdfrac%7B1%7D%7B2%7D%5Cleft%28ze%5Ez%7C_%7Bz_0%7D%5E%7Bz%7D-%5Cint_%7Bz_0%7D%5Ez+e%5Ezdz%5Cright%29%5C%5C%5C%5C%0AI_1%3D%5Cdfrac%7B1%7D%7B2%7D%5Cleft%28%28ze%5Ez-z_0e%5E%7Bz_0%7D%29-+%5Be%5Ez%5D_%7Bz_0%7D%5Ez%5Cright%29%5C%5C%5C%5C%0AI_1%3D%5Cdfrac%7B1%7D%7B2%7D%5Cleft%28%28ze%5Ez-z_0e%5E%7Bz_0%7D%29-%28e%5Ez-e%5E%7Bz_0%7D%29%5Cright%29)
Voltando à variável
:
![I_1=\dfrac{1}{2}\left((ze^z-z_0e^{z_0})-(e^z-e^{z_0})\right)\\\\
I_1=\dfrac{1}{2}\left((\ln(2x)e^{\ln(2x)}-\ln(2x_0)e^{\ln(2x_0)})-(e^{\ln(2x)}-e^{\ln(2x_0)})\right)\\\\
I_1=\dfrac{1}{2}\left((\ln(2x)\cdot2x-\ln(2x_0)\cdot2x_0)-(2x-2x_0)\right)\\\\
I_1=(x\ln(2x)-x_0\ln(2x_0))-(x-x_0)\\\\ I_1=\dfrac{1}{2}\left((ze^z-z_0e^{z_0})-(e^z-e^{z_0})\right)\\\\
I_1=\dfrac{1}{2}\left((\ln(2x)e^{\ln(2x)}-\ln(2x_0)e^{\ln(2x_0)})-(e^{\ln(2x)}-e^{\ln(2x_0)})\right)\\\\
I_1=\dfrac{1}{2}\left((\ln(2x)\cdot2x-\ln(2x_0)\cdot2x_0)-(2x-2x_0)\right)\\\\
I_1=(x\ln(2x)-x_0\ln(2x_0))-(x-x_0)\\\\](https://tex.z-dn.net/?f=I_1%3D%5Cdfrac%7B1%7D%7B2%7D%5Cleft%28%28ze%5Ez-z_0e%5E%7Bz_0%7D%29-%28e%5Ez-e%5E%7Bz_0%7D%29%5Cright%29%5C%5C%5C%5C+%0AI_1%3D%5Cdfrac%7B1%7D%7B2%7D%5Cleft%28%28%5Cln%282x%29e%5E%7B%5Cln%282x%29%7D-%5Cln%282x_0%29e%5E%7B%5Cln%282x_0%29%7D%29-%28e%5E%7B%5Cln%282x%29%7D-e%5E%7B%5Cln%282x_0%29%7D%29%5Cright%29%5C%5C%5C%5C%0AI_1%3D%5Cdfrac%7B1%7D%7B2%7D%5Cleft%28%28%5Cln%282x%29%5Ccdot2x-%5Cln%282x_0%29%5Ccdot2x_0%29-%282x-2x_0%29%5Cright%29%5C%5C%5C%5C%0AI_1%3D%28x%5Cln%282x%29-x_0%5Cln%282x_0%29%29-%28x-x_0%29%5C%5C%5C%5C)
Agora, podemos substituir na expressão que estávamos calculando inicialmente:
![y-y_0 =I_1+(x-x_0)\\\\
y-y_0 =(x\ln(2x)-x_0\ln(2x_0))-(x-x_0)+(x-x_0)\\\\
y-y_0 =x\ln(2x)-x_0\ln(2x_0) y-y_0 =I_1+(x-x_0)\\\\
y-y_0 =(x\ln(2x)-x_0\ln(2x_0))-(x-x_0)+(x-x_0)\\\\
y-y_0 =x\ln(2x)-x_0\ln(2x_0)](https://tex.z-dn.net/?f=y-y_0+%3DI_1%2B%28x-x_0%29%5C%5C%5C%5C%0Ay-y_0+%3D%28x%5Cln%282x%29-x_0%5Cln%282x_0%29%29-%28x-x_0%29%2B%28x-x_0%29%5C%5C%5C%5C%0Ay-y_0+%3Dx%5Cln%282x%29-x_0%5Cln%282x_0%29)
Como foi dado o ponto
, vamos considerar
e
:
![y-y_0 =x\ln(2x)-x_0\ln(2x_0)\\\\
y-0 =x\ln(2x)-1\cdot\ln(2\cdot1)\\\\
y=x\ln(2x)-\ln(2)\\\\
\boxed{f(x)=x\ln(2x)-\ln(2)} y-y_0 =x\ln(2x)-x_0\ln(2x_0)\\\\
y-0 =x\ln(2x)-1\cdot\ln(2\cdot1)\\\\
y=x\ln(2x)-\ln(2)\\\\
\boxed{f(x)=x\ln(2x)-\ln(2)}](https://tex.z-dn.net/?f=y-y_0+%3Dx%5Cln%282x%29-x_0%5Cln%282x_0%29%5C%5C%5C%5C%0Ay-0+%3Dx%5Cln%282x%29-1%5Ccdot%5Cln%282%5Ccdot1%29%5C%5C%5C%5C%0Ay%3Dx%5Cln%282x%29-%5Cln%282%29%5C%5C%5C%5C%0A%5Cboxed%7Bf%28x%29%3Dx%5Cln%282x%29-%5Cln%282%29%7D)
Considere que
Vamos calcular a integral
Realizando a integração por partes:
Voltando à variável
Agora, podemos substituir na expressão que estávamos calculando inicialmente:
Como foi dado o ponto
Perguntas interessantes
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás