Qual é a derivada R'(1)?
Anexos:
Soluções para a tarefa
Respondido por
2
Daremos o tombo no expoente :
R(t) = t^(5/3) - t^(2/3)
R(t)' = (5/3).t^(5/3 - 1) - (2/3).t^(2/3 - 1)
R(t)' = (5/3).t^(2/3) - (2/3).t^(-2/3)
R(t)' = (5/3).∛t² - (2/3).(1/t)^(2/3)
R(t)' = (5/3).∛t² - (2/3).∛(1/t)²
Calculando t = 1
R(1)' = (5/3).∛1² - (2/3).∛1/1²
R(1)' = (5/3).∛1 - (2/3).∛1
R(1)' = 5/3.1 - (2/3).1
R(1)' = 5/3 - 2/3
R(1)' = 3/3
R(1)' = 1 Letra d) ok
R(t) = t^(5/3) - t^(2/3)
R(t)' = (5/3).t^(5/3 - 1) - (2/3).t^(2/3 - 1)
R(t)' = (5/3).t^(2/3) - (2/3).t^(-2/3)
R(t)' = (5/3).∛t² - (2/3).(1/t)^(2/3)
R(t)' = (5/3).∛t² - (2/3).∛(1/t)²
Calculando t = 1
R(1)' = (5/3).∛1² - (2/3).∛1/1²
R(1)' = (5/3).∛1 - (2/3).∛1
R(1)' = 5/3.1 - (2/3).1
R(1)' = 5/3 - 2/3
R(1)' = 3/3
R(1)' = 1 Letra d) ok
Perguntas interessantes
Ed. Física,
8 meses atrás
Psicologia,
8 meses atrás
Química,
8 meses atrás
Química,
1 ano atrás
Português,
1 ano atrás