qual derivada da função f(x) = (3x^5 -1) (2 - x^4)
Soluções para a tarefa
Respondido por
6
Existem dois jeitos
Expandir a expressão de
:
![f(x)=(3x^{5}-1)(2-x^{4})\\\\f(x)=3x^{5}\cdot2-3x^{5}\cdot x^{4}-1\cdot2+1\cdot x^{4}\\\\f(x)=6x^{5}-3x^{9} - 2 + x^{4} f(x)=(3x^{5}-1)(2-x^{4})\\\\f(x)=3x^{5}\cdot2-3x^{5}\cdot x^{4}-1\cdot2+1\cdot x^{4}\\\\f(x)=6x^{5}-3x^{9} - 2 + x^{4}](https://tex.z-dn.net/?f=f%28x%29%3D%283x%5E%7B5%7D-1%29%282-x%5E%7B4%7D%29%5C%5C%5C%5Cf%28x%29%3D3x%5E%7B5%7D%5Ccdot2-3x%5E%7B5%7D%5Ccdot+x%5E%7B4%7D-1%5Ccdot2%2B1%5Ccdot+x%5E%7B4%7D%5C%5C%5C%5Cf%28x%29%3D6x%5E%7B5%7D-3x%5E%7B9%7D+-+2+%2B+x%5E%7B4%7D)
Derivando, temos:
![f'(x)=6\frac{d}{dx}x^{5}-3\frac{d}{dx}x^{9}-0+\frac{d}{dx}x^{4}\\\\f'(x)=6\cdot5x^{4}-3\cdot9x^{8}+4x^{3}\\\\\boxed{\boxed{f'(x)=-27x^{8}+30x^{4}+4x^{3}}} f'(x)=6\frac{d}{dx}x^{5}-3\frac{d}{dx}x^{9}-0+\frac{d}{dx}x^{4}\\\\f'(x)=6\cdot5x^{4}-3\cdot9x^{8}+4x^{3}\\\\\boxed{\boxed{f'(x)=-27x^{8}+30x^{4}+4x^{3}}}](https://tex.z-dn.net/?f=f%27%28x%29%3D6%5Cfrac%7Bd%7D%7Bdx%7Dx%5E%7B5%7D-3%5Cfrac%7Bd%7D%7Bdx%7Dx%5E%7B9%7D-0%2B%5Cfrac%7Bd%7D%7Bdx%7Dx%5E%7B4%7D%5C%5C%5C%5Cf%27%28x%29%3D6%5Ccdot5x%5E%7B4%7D-3%5Ccdot9x%5E%7B8%7D%2B4x%5E%7B3%7D%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7Bf%27%28x%29%3D-27x%5E%7B8%7D%2B30x%5E%7B4%7D%2B4x%5E%7B3%7D%7D%7D)
_________________
Usar a regra do produto
![f(x)=(3x^{5}-1)(2-x^{4})\\\\f'(x)=\frac{d}{dx}[(3x^{5}-1)(2-x^{4})]\\\\f'(x)=(2-x^{4})\frac{d}{dx}(3x^{5}-1)+(3x^{5}-1)\frac{d}{dx}(2-x^{4})\\\\f'(x)=(2-x^{4})(3\cdot5x^{4}-0)+(3x^{5}-1)(0-4x^{3})\\\\f'(x)=15x^{4}\cdot(2-x^{4})-4x^{3}\cdot(3x^{5}-1)\\\\f'(x)=30x^{4}-15x^{8}-12x^{8}+4x^{3}\\\\\boxed{\boxed{f'(x)=-27x^{8}+30x^{4}+4x^{3}}} f(x)=(3x^{5}-1)(2-x^{4})\\\\f'(x)=\frac{d}{dx}[(3x^{5}-1)(2-x^{4})]\\\\f'(x)=(2-x^{4})\frac{d}{dx}(3x^{5}-1)+(3x^{5}-1)\frac{d}{dx}(2-x^{4})\\\\f'(x)=(2-x^{4})(3\cdot5x^{4}-0)+(3x^{5}-1)(0-4x^{3})\\\\f'(x)=15x^{4}\cdot(2-x^{4})-4x^{3}\cdot(3x^{5}-1)\\\\f'(x)=30x^{4}-15x^{8}-12x^{8}+4x^{3}\\\\\boxed{\boxed{f'(x)=-27x^{8}+30x^{4}+4x^{3}}}](https://tex.z-dn.net/?f=f%28x%29%3D%283x%5E%7B5%7D-1%29%282-x%5E%7B4%7D%29%5C%5C%5C%5Cf%27%28x%29%3D%5Cfrac%7Bd%7D%7Bdx%7D%5B%283x%5E%7B5%7D-1%29%282-x%5E%7B4%7D%29%5D%5C%5C%5C%5Cf%27%28x%29%3D%282-x%5E%7B4%7D%29%5Cfrac%7Bd%7D%7Bdx%7D%283x%5E%7B5%7D-1%29%2B%283x%5E%7B5%7D-1%29%5Cfrac%7Bd%7D%7Bdx%7D%282-x%5E%7B4%7D%29%5C%5C%5C%5Cf%27%28x%29%3D%282-x%5E%7B4%7D%29%283%5Ccdot5x%5E%7B4%7D-0%29%2B%283x%5E%7B5%7D-1%29%280-4x%5E%7B3%7D%29%5C%5C%5C%5Cf%27%28x%29%3D15x%5E%7B4%7D%5Ccdot%282-x%5E%7B4%7D%29-4x%5E%7B3%7D%5Ccdot%283x%5E%7B5%7D-1%29%5C%5C%5C%5Cf%27%28x%29%3D30x%5E%7B4%7D-15x%5E%7B8%7D-12x%5E%7B8%7D%2B4x%5E%7B3%7D%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7Bf%27%28x%29%3D-27x%5E%7B8%7D%2B30x%5E%7B4%7D%2B4x%5E%7B3%7D%7D%7D)
Derivando, temos:
_________________
Perguntas interessantes