Matemática, perguntado por joaodederaneves, 1 ano atrás

qual alternativa corresponde a area destacada na figura abaixo;

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
1
Boa noite João!

Solução!

A resolução dessa integral é semelhante a outra,porem essa função tem mais a frente um ponto de intersecção entre a curva e a reta igual a 9,entretanto os intervalos já estão estabelecido[0,1]

\displaystyle \int_{0}^{1}  ( \sqrt{x} ) dx\\\\\\\\\
A=\displaystyle \int_{0} ^{1}  ( \sqrt{x} ) dx\\\\\\\\\ 
A=\displaystyle \int _{0}^{1}  (  \frac{(x) ^\frac{1}{2}}{ \frac{1}{2} }  ) dx\\\\\\\\\
A= (  \frac{(x)^\frac{1}{2}^{+1} }{ \frac{1}{2}+1 }) ~~\bigg|_{0} ^{1}


A= (  \frac{(x)^\frac{3}{2}}{ \frac{3}{2} }) ~~\bigg|_{0} ^{1} \\\\\\\\\
A= (  \frac{ \sqrt{x^{3} } }{ \frac{3}{2} }) ~~\bigg|_{0} ^{1} \\\\\\\\\ 
A= (  \frac{2}{3} .  \sqrt{x^{3}}) ~~\bigg|_{0} ^{1} \\\\\\\\\


A= (  \frac{2}{3} .  \sqrt{x^{3}}) -(  \frac{2}{3} .  \sqrt{x^{3}}) \\\\\\\\
A= (  \frac{2}{3} .  \sqrt{(1)^{3}}) -(  \frac{2}{3} .  \sqrt{(0)^{3}}) \\\\\\\\
A= (  \frac{2}{3} .  \sqrt{1}) -(  \frac{2}{3} .  \sqrt{0}) \\\\\\\\
A= (  \frac{2}{3} . 1) -(  \frac{2}{3} . 0) \\\\\\\\
A= (  \frac{2}{3} ) -(  0) \\\\\\\\

A=  \dfrac{2}{3}~~u.a  \\\\\\\\


\boxed{Resposta:A= \dfrac{2}{3}~~u.a~~\boxed{Alternativa~~b}}


Boa noite!

Bons estudos!


Perguntas interessantes