Matemática, perguntado por Ianny, 1 ano atrás

qual algarismo das dezenas da soma? 7+77+777+7777+...+777...77+777...777?

Soluções para a tarefa

Respondido por Celio
57

Olá, Lanny.

 

Fiz o possível. Veja se a solução te agrada.

 

n\text{ termos}\begin{cases}\overbrace{<var>777...7777}^{n\text{ algarismos}}\\ \vdots\\ 7777\\ 777\\ 77\\ 7\end{cases}</var>

 

Empilhando os números e somando, verificamos que a soma das unidades é 7n, onde n é o número de algarismos do maior número da soma (777 ... 7777).

 

O algarismo da unidade é a soma 7n deduzida de 10 vezes a parte inteira do quociente entre esta soma e 10:

 

<var>7n-10\cdot\lfloor{\frac{7n}{10}}\rfloor</var>

 

Exemplo, se a soma das unidades der 49, o último algarismo das unidades é 49 - 40 = 9 e assim por diante.

 

A soma das dezenas é 7(n-1), onde n é o número de algarismos do maior número da soma (777 ... 7777).


Devemos somar ainda o valor inteiro do quociente entre a soma das unidades e 10, "transportado" para a esquerda (o chamado "vai um", "vai dois", "vai dez", "vai trinta e seis", etc.):

 

<var>7(n-1) + \lfloor{\frac{7n}{10}}\rfloor</var>

 

O algarismo da dezena é, portanto, a soma acima, deduzida de 10 vezes a parte inteira do quociente entre esta soma e 10:

 

<var>\boxed{7(n-1) + \lfloor{\frac{7n}{10}}\rfloor-10\cdot\lfloor{\frac{7(n-1) + \lfloor{\frac{7n}{10}}\rfloor}{10}} \rfloor}</var>

 

O resultado, à primeira vista, parece um pouco complexo, mas exprime fielmente o valor do dígito das dezenas em função de n, que é o número de algarismos do maior número da soma.

 

Façamos um exemplo, para ilustrar o uso da expressão obtida:

 

<var>7+77+777+7777=8638\Rightarrow n=4\text{ (n.\º de algarismos de 7777)}</var>

 

<var>7(n-1) + \lfloor{\frac{7n}{10}}\rfloor-10\cdot\lfloor{\frac{7(n-1) + \lfloor{\frac{7n}{10}}\rfloor}{10}} \rfloor= \\\\ =21 + \lfloor{\frac{28}{10}}\rfloor-10\cdot\lfloor{\frac{21 + \lfloor{\frac{28}{10}}\rfloor}{10}}\rfloor= \\\\ =21 + \lfloor{2,8}\rfloor-10\cdot\lfloor\frac{{21 + \lfloor{2,8}\rfloor}}{10}}\rfloor= \\\\ =21 + 2 - 10\cdot\lfloor{\frac{21 + 2}{10}}\rfloor = \\\\ =23 - 10\cdot\lfloor{2,3}\rfloor = \\\\ =23 - 10\cdot2=\\\\ =23-20=\\\\ =3\text{ (algarismo das dezenas de 8638)}</var>

 

Respondido por danielaleona0807
15

864192. essa é a resposta

Perguntas interessantes