Matemática, perguntado por bibizinhaa9019, 1 ano atrás

Qual a única resposta correta como solução da ED : dydx=yx+1 ?

Soluções para a tarefa

Respondido por carlosmath
1
dy=(xy+1)~dx\\ \\
(xy+1)~dx-dy=0\\ \\
(xy+1)u(x,y)~dx-u(x,y)dy=0\\ \\
P(x,y)=(xy+1)u(x,y)~~,~~Q(x,y)=-u(x,y)\\ \\
\to P_y=xu+(xy+1)u_y~~,~~Q_x=-u_x\\ \\
\texttt{conviene: }u=u(x)\\ \\
\to P_y=xu~~,~~Q_x=-u_x\to xu=-u_x=\dfrac{du}{dx}\\ \\
x~dx=-\dfrac{du}{u}\\ \\
\dfrac{x^2}{2}=-\ln u\to u=e^{-x^2/2}


\texttt{Ecuaci\'on equivalente }(xy+1)e^{-x^2/2}~dx-e^{-x^2/2}dy=0\\ \\ \\
f_x=(xy+1)e^{-x^2/2}~~,~~f_y=-e^{-x^2/2}\\ \\
f_y=-e^{-x^2/2}\to f(x,y)=-e^{-x^2/2}y+\phi(x)\to f_x=xye^{-x^2/2}+\phi_x\\ \\ \\
(xy+1)e^{-x^2/2}=xye^{-x^2/2}+\phi_x\\ \\ \\
\phi_x=e^{-x^2/2}\\ \\
\displaystyle
\phi(x)=\int_{0}^{x}e^{-t^2/2}~dt\\ \\ \\
\texttt{soluci\'on}:\\ \\
e^{-x^2/2}y+\int_{0}^{x}e^{-t^2/2}~dt=C\\ \\ \\
\boxed{\boxed{y=C\cdot e^{x^2/2}-e^{x^2/2}\int_{0}^{x}e^{-t^2/2}~dt}}
Perguntas interessantes