Matemática, perguntado por gabycbeck, 1 ano atrás

Qual a soma dos dez primeiros termos da P.G (3,6,12...)?

Soluções para a tarefa

Respondido por jjzejunio
12
Primeiro vamos encontrar o valor do ultimo termo (an).


Formula: an = a1.q^n-1

an = ?
a1 = 3
n = 10
q = 2


an = 3.2^10-1
an = 3.2^9
an = 3.512
an = 1536


Agora aplicamos a fórmula da soma da PG:

Sn = (an.q - a1)/q-1


Sn = (1536.2 - 3)/2-1
Sn = (3072 - 3)/1
Sn = 3069/1
Sn = 3069



★Espero ter ajudado! tmj
Respondido por solkarped
2

✅ Após resolver os cálculos, concluímos que a soma dos dez primeiros termos da referida progressão geométrica é:

        \LARGE\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf S_{10} = 3069\:\:\:}}\end{gathered}$}

Seja a progressão geométrica:

          \Large\displaystyle\text{$\begin{gathered} P.G.(3, 6, 12, \cdots)\end{gathered}$}

Calculando a razão da P.G. temos:

        \Large\displaystyle\text{$\begin{gathered} q = \frac{A_{n}}{A_{n - 1}} = \frac{6}{3} = 2\end{gathered}$}

Desta forma, temos os seguintes dados:

       \Large\begin{cases}S_{n} = Soma\:n\:termos = \:?\\A_{1} = Primeiro\:termo = 3\\n = Ordem\:termo\:procurado = 10\\q = Raz\tilde{a}o = 6/3 = 2 \end{cases}

Para calcular o produto dos seis primeiros termos da progressão geométrica devemos utilizar a seguinte fórmula

\Large\displaystyle\text{$\begin{gathered} \bf I\end{gathered}$}          \LARGE\displaystyle\text{$\begin{gathered} S_{n} = \frac{A_{1}\cdot(q^{n} - 1)}{q - 1}\end{gathered}$}

Substituindo os valores na equação "I", temos:

         \LARGE\displaystyle\text{$\begin{gathered} S_{10} = \frac{3\cdot(2^{10} - 1)}{2 - 1}\end{gathered}$}

                   \LARGE\displaystyle\text{$\begin{gathered} = \frac{3\cdot(1024 - 1)}{1}\end{gathered}$}

                   \LARGE\displaystyle\text{$\begin{gathered} = 3\cdot1023\end{gathered}$}

                   \LARGE\displaystyle\text{$\begin{gathered} = 3069\end{gathered}$}

✅ Portanto, o resultado é:

           \LARGE\displaystyle\text{$\begin{gathered} S_{10} = 3069\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/9143935
  2. https://brainly.com.br/tarefa/4012194
  3. https://brainly.com.br/tarefa/821410
  4. https://brainly.com.br/tarefa/36868858
  5. https://brainly.com.br/tarefa/3509992
  6. https://brainly.com.br/tarefa/15074647
  7. https://brainly.com.br/tarefa/22439397
  8. https://brainly.com.br/tarefa/10930557
  9. https://brainly.com.br/tarefa/20268424

Anexos:
Perguntas interessantes