Matemática, perguntado por dudaerobs, 10 meses atrás

Qual a integral de 2x√(x-2)dx

Soluções para a tarefa

Respondido por CyberKirito
0

\displaystyle\mathsf{\int2x\sqrt{x-2} \: dx}

 \mathsf{t=\sqrt{x-2}\to~x-2={t}^{2}} \\\mathsf{x = 2 +  {t}^{2} \to \: dx = 2t \: dt}

\displaystyle\mathsf{\int2x\sqrt{x-2} \: dx } \\ = \mathsf{ \int2.( {t}^{2} + 2).t.2tdt} \\ \mathsf{4\int( {t}^{4}  +  2{t}^{2})dt =  \dfrac{4}{5}{t}^{5} +  \dfrac{8}{3}{t}^{3} + k}

\displaystyle\mathsf{\int2x\sqrt{x-2} \: dx}\\ = \mathsf{\dfrac{4}{5}{(\sqrt{x-2})}^{5}+\dfrac{8}{3}{(\sqrt{x-2})}^{3}+k}

Perguntas interessantes