Matemática, perguntado por dino4, 1 ano atrás

qual a integral da funcao cossec x dx

Soluções para a tarefa

Respondido por Usuário anônimo
2
 \int\ {cscx} \, dx

 \int\ {\frac{1}{sinx}} \, dx

 \int\ {\frac{sinx}{sin^2x}} \, dx

 \int\ {\frac{sinx}{1-cos^2x}} \, dx

u=cosx

du=-sinx dx

dx=-\frac{du}{sinx}

- \int\ {\frac{sinx}{(1-u^2)sinx}} \, du

- \int\ {\frac{1}{1-u^2}} \, du

- \int\ {\frac{1}{(1-u)(1+u)}} \, du

\frac{A}{1-u}+\frac{B}{1+u}=\frac{1}{(1-u)(1+u)}

\frac{A+Au+B-Bu}{(1-u)(1+u)}=\frac{1}{(1-u)(1+u)}

\frac{(A+B)+(A-B)u}{(1-u)(1+u)}=\frac{1}{(1-u)(1+u)}

 \left \{ {{A+B=1} \atop {A-B=0}} \right.

A=\frac12, B=\frac12

\frac12\frac{1}{1-u}+\frac12\frac{1}{1+u}=\frac{1}{(1-u)(1+u)}

- \int\ {\frac12\frac{1}{1-u}+\frac12\frac{1}{1+u}} \, du

-( \int\ {\frac12\frac{1}{1-u}} \, du+ \int\ {\frac12\frac{1}{1+u}} \, du )

-(\frac12 \int\ {\frac{1}{1-u}} \, du+ \frac12\int\ {\frac{1}{1+u}} \, du )

-(\frac12 (-ln|1-u|)+ \frac12(ln|1+u| ))

-\frac12( (-ln|1-u|)+(ln|1+u| ))

-\frac12 ln|\frac{1+u}{1-u}|

u=cosx

-\frac12 ln|\frac{1+cosx}{1-cosx}|

Como cosx≤1 podemos tirar o modulo:

\boxed{-\frac12 ln(\frac{1+cosx}{1-cosx})+C}
Respondido por evertonzohan2016
2

Resposta:

∫CosSecx dx=

∫CosSecx . CosSecx-Cotgx/CosSecx-Cotgx dx=

∫CosSec^2x-CosSecxCotgx/CosSecx-Cotgx dx =

u= CosSecx-Cotgx du= - CosSecxCotg + CosSec^2x

∫1/u . du =

ln | u | + c = l

ln | CosSecx-Cotgx | +c

Perguntas interessantes