Qual a fração geratriz de:
3,222...
1,212121...
0,05050...
2,0101...
1,43333...
0,15444...
Soluções para a tarefa
Respondido por
1
a)3,222... = 3 + 2/9 = 3 x 9 + 2/9 = 27 + 2/9 = 29/9
b) 1,212121..... = 1 + 21/99 = 1 x 99 + 21/99 = 99 + 21/99 = 120/99 simplificando por 3 = 40/33
c)0,0505050.... = 050 - 0/990 = 050/990 simplificando por 10 = 5/99
d) 2,010101...... = 2 + 01/99 = 2 x 99 + 01/99 = 198 + 01/99 = 199/99
e)1,4333.... = 1 + 43 - 4 / 90 = 1 + 39/90 = 1 x 90 + 39/90 = 90+39/90 = 129/90 simplificando por 3 = 43/30
f)1,15444.... = 1 + 154 - 15/900 = 1 + 139/900 = 1 x 900 + 139 / 900 =
900 + 139/900 = 1039/900
b) 1,212121..... = 1 + 21/99 = 1 x 99 + 21/99 = 99 + 21/99 = 120/99 simplificando por 3 = 40/33
c)0,0505050.... = 050 - 0/990 = 050/990 simplificando por 10 = 5/99
d) 2,010101...... = 2 + 01/99 = 2 x 99 + 01/99 = 198 + 01/99 = 199/99
e)1,4333.... = 1 + 43 - 4 / 90 = 1 + 39/90 = 1 x 90 + 39/90 = 90+39/90 = 129/90 simplificando por 3 = 43/30
f)1,15444.... = 1 + 154 - 15/900 = 1 + 139/900 = 1 x 900 + 139 / 900 =
900 + 139/900 = 1039/900
Perguntas interessantes
Matemática,
8 meses atrás
Inglês,
8 meses atrás
Português,
8 meses atrás
Artes,
1 ano atrás
Ed. Física,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás