Matemática, perguntado por joaovitorpaixa, 8 meses atrás

Qual a derivada de x vezes raiz de x, por definição?

Soluções para a tarefa

Respondido por elizeugatao
0

\text{f(x)}= \text x.\sqrt{\text x}

Derivada pela definição :

\displaystyle \text{f'(x)}= \lim_{\text h\to 0}\frac{\text{f(x+h)}-\text f(\text x)}{\text h}

\displaystyle \lim_{\text h\to0} \frac{(\text x+\text h)\sqrt{\text x+\text h}-\text x\sqrt{\text x}}{\text h}

Racionalizando o numerador :

\displaystyle \lim_{\text h\to0} \frac{[\ (\text x+\text h)\sqrt{\text x+\text h}-\text x\sqrt{\text x}\ ]}{\text h}.\frac{[\ ( \text x+\text h)\sqrt{\text x+\text h}  +\text x\sqrt{\text x}  \ ]}{[\ ( \text x+\text h)\sqrt{\text x+\text h}  +\text x\sqrt{\text x}  \ ]}

\displaystyle \lim_{\text h\to0} \frac{(\text x+\text h)^2(\text x+\text h)-\text x^2\text x}{\text h.[\ ( \text x+\text h)\sqrt{\text x+\text h}  +\text x\sqrt{\text x}  \ ]} \\\\\\\ \lim_{\text h\to0} \frac{(\text x+\text h)^3-\text x^3}{\text h.[\ ( \text x+\text h)\sqrt{\text x+\text h}  +\text x\sqrt{\text x}  \ ]}

desenvolvendo :

\displaystyle \lim_{\text h\to0} \frac{\text x^3+3\text x^2.\text h+3\text x.\text h^2+\text h^3-\text x^3}{\text h.[\ ( \text x+\text h)\sqrt{\text x+\text h}  +\text x\sqrt{\text x}  \ ]} \\\\\\ \lim_{\text h\to0} \frac{3\text x^2.\text h+3\text x.\text h^2+\text h^3}{\text h.[\ ( \text x+\text h)\sqrt{\text x+\text h}  +\text x\sqrt{\text x}  \ ]}

\displaystyle \lim_{\text h\to0} \frac{\text h.(3\text x^2+3\text x.\text h+\text h^2)}{\text h.[\ ( \text x+\text h)\sqrt{\text x+\text h}  +\text x\sqrt{\text x}  \ ]}

\displaystyle \lim_{\text h\to0} \frac{3\text x^2+3\text x.\text h+\text h^2}{ ( \text x+\text h)\sqrt{\text x+\text h}  +\text x\sqrt{\text x}  } \\\\\\\ \underline{\text{fazendo h = 0}}: \\\\\\\  \frac{3\text x^2+3\text x.0+0^2}{ ( \text x+0)\sqrt{\text x+0}  +\text x\sqrt{\text x}  }  \\\\\\ \frac{3\text x^2}{ \text x\sqrt{\text x}  +\text x\sqrt{\text x}  }  = \frac{3\text x^2}{2\text x\sqrt{\text x}} \\\\\\\frac{3\text x}{2\sqrt{\text x}}\to\frac{3\text x\sqrt{\text x}}{2\sqrt{\text x}.\sqrt{\text x}}

\displaystyle \frac{3\sqrt{\text x}}{2}

Portanto:

\huge\boxed{[\text x\sqrt{\text x}]'= \frac{3\sqrt{\text x}}{2}\ }\checkmark

Perguntas interessantes