Qual a área do polígono?
Soluções para a tarefa
Resposta:
A ≅192,4 mi², alternativa C
Explicação passo-a-passo:
Olá, tudo bem?
O exercício trata da área do decaedro, um polígono com 10 faces.
A = (P·a )/ 2
Cálculo do Perímetro:
P = 10 . 5 mi = 50 mi
Cálculo do ângulo central:
360/n
360/10
36º
Cálculo do Apótema:
O poligano foi dividido em dez triângulos isósceles e congruentes, Suponha que em um dos lados há o triangulo ABC, o apótema, que é a altura do triângulo também o divide em dois triângulos menores sendo ADB o nosso triângulo.
Como o apótema pode também ser a bissetriz deste triangulo o ângulo em ADB é metade do angulo central, ou seja é 18º.
Para descobrir o comprimento do apótema basta calcular a tangente de β neste triangulo:
tgβ = 2,5/ a
tg 18º = 2,5/a
0,325 . a = 2,5
a = 2,5/ 0,325
a = 7,7
Cálculo da área total:
A = (P·a )/ 2
A = 50 . 7,7 / 2
A = 384,61/2
A ≅192,4 mi², alternativa C
Saiba mais sobre polígonos, acesse aqui:
https://brainly.com.br/tarefa/24726282
Sucesso nos estudos!!!