Biologia, perguntado por aliciahayashiii, 8 meses atrás

quais são as etapas da respiração celular e a quantidade de ATP liberada em cada uma?​

Soluções para a tarefa

Respondido por heloisacabral6060
2

Explicação:

A respiração celular é um processo em que moléculas orgânicas são oxidadas e ocorre a produção de ATP (adenosina trifosfato), que é usada pelos seres vivos para suprir suas necessidades energéticas. A respiração ocorre em três etapas básicas: a glicólise, o ciclo de Krebs e a fosforilação oxidativa.

Glicólise

A glicólise é uma etapa anaeróbia da respiração celular que ocorre no citosol e envolve dez reações químicas diferentes. Essas reações são responsáveis pela quebra de uma molécula de glicose (C6H12O6) em duas moléculas de ácido pirúvico (C3H4O3).

O processo de glicólise inicia-se com a adição de dois fosfatos, provenientes de duas moléculas de ATP, à molécula de glicose, promovendo a sua ativação. Essa molécula torna-se instável e quebra-se facilmente em ácido pirúvico. Com a quebra, ocorre a produção de quatro moléculas de ATP, entretanto, como duas foram utilizadas inicialmente para a ativação da glicose, o saldo positivo é de duas moléculas de ATP.

Durante a glicólise também são liberados quatro elétrons (e-) e quatro íons H+. Dois H+ e os quatro e- são capturados por duas moléculas de NAD+ (dinucleotídio nicotinamida-adenina), produzindo moléculas de NADH.

Temos, portanto, a seguinte equação que resume a glicólise:C6H12O6+ 2ADP + 2Pi + 2NAD+ → 2C3H4O3 + 2ATP + 2NADH + 2H+

Ciclo de Krebs

Após a glicólise, inicia-se uma etapa aeróbia, a qual inclui o ciclo de Krebs, também chamado de ciclo do ácido cítrico ou ciclo do ácido tricarboxílico. Essa etapa ocorre no interior da organela celular conhecida como mitocôndria e inicia-se com o transporte do ácido pirúvico para a matriz mitocondrial.

Na matriz, o ácido pirúvico reage com a coenzima A (CoA) ali existente, produzindo uma molécula de acetilcoenzima A (acetil-CoA) e uma molécula de gás carbônico. Durante esse processo, uma molécula de NAD+ é transformada em uma de NADH em razão da captura de 2 e- e 1 dos 2 H+ que foram liberados na reação.

A molécula de acetil-CoA sofre com o processo de oxidação e dá origem a duas moléculas de gás carbônico e a uma molécula intacta de coenzima A. Esse processo, que envolve várias reações químicas, é o chamado ciclo de Krebs. Veja o esquema que está na imagem lá em cima

Esse ciclo tem início quando uma molécula de acetil-CoA e o ácido oxalacético reagem e produzem uma molécula de ácido cítrico, liberando uma molécula de CoA. Ocorrem sequencialmente oito reações em que são liberadas duas moléculas de gás carbônico, elétrons e H+. No final desse processo, o ácido oxalacético é recuperado e o ciclo pode ser iniciado novamente. Os elétrons e os íons H+ são capturados pelo NAD+ e transformados em NADH. Eles também são capturados pelo FAD (dinucleotídio de flavina-adenina), que é transformado em FADH2. O ciclo de Krebs resulta em 3 NADH e 1 FADH2.

Durante o ciclo, também é produzida uma molécula de GTP (trifosfato de guanosina) a partir de GDP (difosfato de guanina) e Pi. Essa molécula de GTP assemelha-se ao ATP e também é responsável por fornecer energia para a realização de alguns processos no interior da célula.

Fosforilação oxidativa

A última etapa da respiração celular também ocorre no interior das mitocôndrias, mais precisamente nas cristas mitocondriais. Essa etapa é chamada de fosforilação oxidativa, uma vez que se refere à produção de ATP a partir da adição de fosfato ao ADP (fosforilação). A maior parte da produção de ATP ocorre nessa etapa, na qual acontece a reoxidação das moléculas de NADH e FADH2.

Nas cristas mitocondriais são encontradas proteínas que estão dispostas em sequência, as chamadas cadeias transportadoras de elétrons ou cadeias respiratórias. Nessas cadeias ocorre a condução dos elétrons presentes no NADH e no FADH2 até o oxigênio. As proteínas responsáveis por transferir os elétrons são chamadas de citocromos.

Os elétrons, ao passarem pela cadeia respiratória, perdem energia e, no final, combinam-se com o gás oxigênio, formando água na reação final. Apesar de participar apenas no final da cadeia, a falta de oxigênio gera o interrompimento do processo.

A energia liberada através da cadeia respiratória faz com que os íons H+ concentrem-se no espaço entre as cristas mitocondriais, voltando à matriz. Para voltar ao interior da mitocôndria, é necessário passar por um complexo proteico chamado de sintase do ATP, onde ocorre a produção de ATP. Nesse processo são formadas cerca de 26 ou 28 moléculas de ATP.

No final da respiração celular, há um saldo positivo total de 30 ou 32 moléculas de ATP: 2 ATP da glicólise, 2 ATP do ciclo de Krebs e 26 ou 28 da fosforilação oxidativa.

Importante: Nos seres procariontes, todo o processo de respiração celular ocorre no citoplasma e na membrana celular.

Anexos:
Perguntas interessantes