Quais das seguintes transformações são lineares?
a) T: R-------R²
T (x,y,z) --------- (x-y,x,2z)
b) T: M2x2--------R
T (A) = det A
Soluções para a tarefa
Respondido por
0
Olá, Rogildo.
Uma transformação T é linear se satisfaz duas condições:
![\text{(i)}\,T(u+v)=T(u)+T(v)\\\\\text{(ii)}\,T( \alpha v)= \alpha T(v) \text{(i)}\,T(u+v)=T(u)+T(v)\\\\\text{(ii)}\,T( \alpha v)= \alpha T(v)](https://tex.z-dn.net/?f=%5Ctext%7B%28i%29%7D%5C%2CT%28u%2Bv%29%3DT%28u%29%2BT%28v%29%5C%5C%5C%5C%5Ctext%7B%28ii%29%7D%5C%2CT%28+%5Calpha+v%29%3D+%5Calpha+T%28v%29)
____________________________________________________________
![\text{a)}\,\,T:\mathbb{R}^3\to\mathbb{R}^3,\text{ onde }T(x,y,z) =(x-y,x,2z),\text{ \' e linear, pois:}\\\\\text{(i)}\,T( \alpha x, \alpha y, \alpha z)=(\alpha x - \alpha y, \alpha x,2 \alpha z)\\\\ \alpha T(x,y,z) = \alpha (x-y,x,2z)=( \alpha x- \alpha y, \alpha x,2 \alpha z)\Rightarrow\\\\ T( \alpha x, \alpha y, \alpha z) = \alpha T(x,y,z) \text{a)}\,\,T:\mathbb{R}^3\to\mathbb{R}^3,\text{ onde }T(x,y,z) =(x-y,x,2z),\text{ \' e linear, pois:}\\\\\text{(i)}\,T( \alpha x, \alpha y, \alpha z)=(\alpha x - \alpha y, \alpha x,2 \alpha z)\\\\ \alpha T(x,y,z) = \alpha (x-y,x,2z)=( \alpha x- \alpha y, \alpha x,2 \alpha z)\Rightarrow\\\\ T( \alpha x, \alpha y, \alpha z) = \alpha T(x,y,z)](https://tex.z-dn.net/?f=%5Ctext%7Ba%29%7D%5C%2C%5C%2CT%3A%5Cmathbb%7BR%7D%5E3%5Cto%5Cmathbb%7BR%7D%5E3%2C%5Ctext%7B+onde+%7DT%28x%2Cy%2Cz%29+%3D%28x-y%2Cx%2C2z%29%2C%5Ctext%7B+%5C%27+e+linear%2C+pois%3A%7D%5C%5C%5C%5C%5Ctext%7B%28i%29%7D%5C%2CT%28+%5Calpha+x%2C+%5Calpha+y%2C+%5Calpha+z%29%3D%28%5Calpha+x+-+%5Calpha+y%2C+%5Calpha+x%2C2+%5Calpha+z%29%5C%5C%5C%5C+%5Calpha+T%28x%2Cy%2Cz%29+%3D+%5Calpha+%28x-y%2Cx%2C2z%29%3D%28+%5Calpha+x-+%5Calpha+y%2C+%5Calpha+x%2C2+%5Calpha+z%29%5CRightarrow%5C%5C%5C%5C+T%28+%5Calpha+x%2C+%5Calpha+y%2C+%5Calpha+z%29+%3D+%5Calpha+T%28x%2Cy%2Cz%29)
![\text{(ii)}\,T(x_1,y_1,z_1) =(x_1-y_1,x_1,2z_1)\\\\
T(x_2,y_2,z_2) =(x_2-y_2,x_2,2z_2)\\\\
T(x_1,y_1,z_1) +T(x_2,y_2,z_2)=(x_1-y_1,x_1,2z_1)+(x_2-y_2,x_2,2z_2)=\\\\
=(x_1-y_1+x_2-y_2,x_1+x_2,2z_1+2z_2)=\\\\=(x_1+x_2-(y_1+y_2),x_1+x_2,2(z_1+z_2))=\\\\
=T(x_1+x_2,y_1+y_2,z_1+z_2) \text{(ii)}\,T(x_1,y_1,z_1) =(x_1-y_1,x_1,2z_1)\\\\
T(x_2,y_2,z_2) =(x_2-y_2,x_2,2z_2)\\\\
T(x_1,y_1,z_1) +T(x_2,y_2,z_2)=(x_1-y_1,x_1,2z_1)+(x_2-y_2,x_2,2z_2)=\\\\
=(x_1-y_1+x_2-y_2,x_1+x_2,2z_1+2z_2)=\\\\=(x_1+x_2-(y_1+y_2),x_1+x_2,2(z_1+z_2))=\\\\
=T(x_1+x_2,y_1+y_2,z_1+z_2)](https://tex.z-dn.net/?f=%5Ctext%7B%28ii%29%7D%5C%2CT%28x_1%2Cy_1%2Cz_1%29+%3D%28x_1-y_1%2Cx_1%2C2z_1%29%5C%5C%5C%5C%0AT%28x_2%2Cy_2%2Cz_2%29+%3D%28x_2-y_2%2Cx_2%2C2z_2%29%5C%5C%5C%5C%0AT%28x_1%2Cy_1%2Cz_1%29+%2BT%28x_2%2Cy_2%2Cz_2%29%3D%28x_1-y_1%2Cx_1%2C2z_1%29%2B%28x_2-y_2%2Cx_2%2C2z_2%29%3D%5C%5C%5C%5C%0A%3D%28x_1-y_1%2Bx_2-y_2%2Cx_1%2Bx_2%2C2z_1%2B2z_2%29%3D%5C%5C%5C%5C%3D%28x_1%2Bx_2-%28y_1%2By_2%29%2Cx_1%2Bx_2%2C2%28z_1%2Bz_2%29%29%3D%5C%5C%5C%5C%0A%3DT%28x_1%2Bx_2%2Cy_1%2By_2%2Cz_1%2Bz_2%29)
____________________________________________________________
![\text{b)}\,\,T: M_{2\times2}\to\mathbb{R},\text{ onde }T(A)=\det A,\text{ n\~ao \' e linear, pois:}\\\\ \text{Seja }A= \left[\begin{array}{cc}a_{11}&a_{12}&\\a_{21}&a_{22}\end{array}\right] \Rightarrow \det A=a_{11}a_{22}-a_{12}a_{21}\\\\\\ \alpha A= \left[\begin{array}{cc} \alpha a_{11}& \alpha a_{12}&\\ \alpha a_{21}& \alpha a_{22}\end{array}\right] \Rightarrow \text{b)}\,\,T: M_{2\times2}\to\mathbb{R},\text{ onde }T(A)=\det A,\text{ n\~ao \' e linear, pois:}\\\\ \text{Seja }A= \left[\begin{array}{cc}a_{11}&a_{12}&\\a_{21}&a_{22}\end{array}\right] \Rightarrow \det A=a_{11}a_{22}-a_{12}a_{21}\\\\\\ \alpha A= \left[\begin{array}{cc} \alpha a_{11}& \alpha a_{12}&\\ \alpha a_{21}& \alpha a_{22}\end{array}\right] \Rightarrow](https://tex.z-dn.net/?f=%5Ctext%7Bb%29%7D%5C%2C%5C%2CT%3A+M_%7B2%5Ctimes2%7D%5Cto%5Cmathbb%7BR%7D%2C%5Ctext%7B+onde+%7DT%28A%29%3D%5Cdet+A%2C%5Ctext%7B+n%5C%7Eao+%5C%27+e+linear%2C+pois%3A%7D%5C%5C%5C%5C+%5Ctext%7BSeja+%7DA%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da_%7B11%7D%26amp%3Ba_%7B12%7D%26amp%3B%5C%5Ca_%7B21%7D%26amp%3Ba_%7B22%7D%5Cend%7Barray%7D%5Cright%5D+%5CRightarrow+%5Cdet+A%3Da_%7B11%7Da_%7B22%7D-a_%7B12%7Da_%7B21%7D%5C%5C%5C%5C%5C%5C+%5Calpha+A%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D+%5Calpha+a_%7B11%7D%26amp%3B+%5Calpha+a_%7B12%7D%26amp%3B%5C%5C+%5Calpha+a_%7B21%7D%26amp%3B+%5Calpha+a_%7B22%7D%5Cend%7Barray%7D%5Cright%5D+%5CRightarrow)
![\underbrace{\det ( \alpha A)}_{T( \alpha A)}= \alpha ^2a_{11}a_{22}- \alpha ^2a_{12}a_{21}= \alpha ^2(a_{11}a_{22}-a_{12}a_{21})= \alpha ^2\underbrace{\det A\R}_{T(A)} \Rightarrow\\\\T( \alpha A)= \alpha^2 T(A)\Rightarrow T( \alpha A) \neq \alpha T(A) \underbrace{\det ( \alpha A)}_{T( \alpha A)}= \alpha ^2a_{11}a_{22}- \alpha ^2a_{12}a_{21}= \alpha ^2(a_{11}a_{22}-a_{12}a_{21})= \alpha ^2\underbrace{\det A\R}_{T(A)} \Rightarrow\\\\T( \alpha A)= \alpha^2 T(A)\Rightarrow T( \alpha A) \neq \alpha T(A)](https://tex.z-dn.net/?f=%5Cunderbrace%7B%5Cdet+%28+%5Calpha+A%29%7D_%7BT%28+%5Calpha+A%29%7D%3D+%5Calpha+%5E2a_%7B11%7Da_%7B22%7D-+%5Calpha+%5E2a_%7B12%7Da_%7B21%7D%3D+%5Calpha+%5E2%28a_%7B11%7Da_%7B22%7D-a_%7B12%7Da_%7B21%7D%29%3D+%5Calpha+%5E2%5Cunderbrace%7B%5Cdet+A%5CR%7D_%7BT%28A%29%7D+%5CRightarrow%5C%5C%5C%5CT%28+%5Calpha+A%29%3D+%5Calpha%5E2+T%28A%29%5CRightarrow+T%28+%5Calpha+A%29+%5Cneq+%5Calpha+T%28A%29)
____________________________________________________________
Conclusão: a transformação da letra "a" é linear.
Uma transformação T é linear se satisfaz duas condições:
____________________________________________________________
____________________________________________________________
____________________________________________________________
Conclusão: a transformação da letra "a" é linear.
rogildo:
Olá Celio, Não será ? a11,a12,a21,a22? Ok.
Perguntas interessantes