Matemática, perguntado por hunterkimskz, 1 ano atrás

QUADRADO DA DIFERENÇA DE DOIS TERMOS

A planta baixa a seguir mostra um terreno plano e quadrado com 30 m de lado no qual serao construidos uma casa, dois jardins de mesmo tamanho e um canil. A regiao e do canil tem formato de quadrado, e os jardins, formato retangular.

Considere a medida x em mestros e faça o que se pede em cada item.

1) Calcule a area total, em metros quadrados, desse terreno.

2) Indique nas figuras anteriores as expressoes que representam as medidas de seus lados.

3) Determine o trinomio que representa a area, em metros quadrados, da parte do terreno ocupada pela casa.

Anexos:

Soluções para a tarefa

Respondido por numero20
49

1) A área total do terreno é 900 m².

2) As expressões que representam as medidas de seus lados são: (30-x)(30-x), (30-x)x e x².

3) A área da casa é: x² - 60x + 900.

Inicialmente, vamos determinar a área total do terreno. Uma vez que temos um terreno com formato quadrado, a área do terreno é equivalente ao quadrado da medida da aresta. Sabendo que esse valor é igual a 30, temos o seguinte valor:

A_{terreno}=30^2=900 \ m^2

Agora, vamos determinar as expressões que representam as medidas dos lados de cada parcela do terreno. Note que o jardim possui o lado menor igual a X e o canil forma um quadrado de lado X. Dessa maneira, temos as seguinte expressões:

Casa=(30-x)(30-x)\\ \\ Jardim=(30-x)x\\ \\ Canil=x^2

Por fim, vamos determinar o trinômio referente a área ocupada pela casa, multiplicando as duas parcelas. Portanto:

Casa=(30-x)(30-x)=900-30x-30x+x^2=\boxed{x^2-60x+900}

Respondido por luizmiguelxavier2006
1

Resposta:

x²-60x+900

Explicação passo a passo:

(30-x) (30-x)=900-30x-30x+x²= x²-60x+900

Perguntas interessantes