Física, perguntado por peachybalm, 10 meses atrás

(Pucrj 2010) Um bloco escorrega a partir do repouso por um plano inclinado que faz um ângulo de 30° com a horizontal. Sabendo que durante a queda a aceleração do bloco é de 5,0 m/s2 e considerando g=10 m/s2, podemos dizer que o coeficiente de atrito cinético entre o bloco e o plano é


Por favor me ajudem :(

Soluções para a tarefa

Respondido por diogopucci
4

Resposta:

μ≅0,3

Explicação:

Px - Fat= m*a

P(sen 0º) - N*μ= m * a

onde:

N= Py

P= m* g

Sendo assim, teremos que:

P*sen 0º - N * μ= m * a

m* g (sen 0º) -  m* g* (cos 0°) * μ= m * a

g * sen 0° - g * cos 0° * μ= m *a

g * sen 0° - g * cos 0° * μ= a

10* sen 45º - 10* cos 45º* μ=  5

10 * √2/2 - (10 * √2/2) * μ= 5

10 * √2/2 (1 - μ)= 5

1 - μ= (5/10) * (√2/2 )

1 - μ= √2/2

μ= 1- √2/2

μ≅0,3

Respondido por LeoCesars
3

Resposta:

Explicação:

As forças que atuam no no bloco são Px (peso na horizontal),Py (peso que resulta na normal), força de atrito (-Fat) e a Normal. Equacionando essas forças e igualando ao produto m · a, uma vez que o corpo está acelerado, temos:

Px - Fat = m · a

m · g · senΘ - μ·N = m · a

m · g · senΘ - μ · m · g · cosΘ = m · a

Isolando a massa m, ficamos com:

m · g (senΘ - μ · cosΘ) = m · a

g (senΘ - μ · cosΘ) = a

Agora, substituindo com as informação do enunciado:

10 (\frac{1}{2} - μ \sqrt{3} /2) = 5

μ = \sqrt{3} /3

Espero ter ajudado!

Bons estudos :)

Perguntas interessantes