Matemática, perguntado por TTecnico, 1 ano atrás

Prove que

\int^{\infty}_{-\infty} {e^{\left(\dfrac{-x^2}{2\sigma^2}\right)} \, dx} = \sqrt[2]{2\pi}|\sigma}|

Respostas com brincadeiras ou incompletas serão desconsideradas

Soluções para a tarefa

Respondido por Niiya
3
Mostrar que

\displaystyle\int_{-\infty}^{+\infty}\exp\bigg\{-\frac{x^{2}}{2\sigma^{2}}\bigg\}\,dx=\sqrt{2\pi}|\sigma|

Resolução:

Considere a=\displaystyle\int_{-\infty}^{+\infty}\exp\bigg\{-\frac{x^{2}}{2\sigma^{2}}\bigg\}\,dx, então

\bigg(\displaystyle\int_{-\infty}^{+\infty}\exp\bigg\{-\frac{x^{2}}{2\sigma^{2}}\bigg\}\,dx\bigg)\cdot\bigg(\int_{-\infty}^{+\infty}\exp\bigg\{-\frac{x^{2}}{2\sigma^{2}}\bigg\}\,dx\bigg)=a\cdot a

Mudando a variável da segunda integral:

\displaystyle\bigg(\int_{-\infty}^{+\infty}\exp\bigg\{-\frac{x^{2}}{2\sigma^{2}}\bigg\}\,dx\bigg)\cdot\bigg(\int_{-\infty}^{+\infty}\exp\bigg\{-\frac{y^{2}}{2\sigma^{2}}\bigg\}\,dy\bigg)=a^{2}

Do cálculo, sabemos que \iint_{A}f(x)g(x)\,dxdy=\big(\int_{A}f(x)dx\big)\big(\int_{A}g(y)dy\big) (para domínio A simples, que é o caso)

Então,

\displaystyle\iint_{-\infty}^{+\infty}\exp\bigg\{-\frac{x^{2}}{2\sigma^{2}}\bigg\}\cdot\exp\bigg\{-\frac{y^{2}}{2\sigma^{2}}\bigg\}\,dxdy=a^{2}\\\\\\\iint_{\mathbb{R}^{2}}\exp\bigg\{-\frac{x^{2}}{2\sigma^{2}}-\frac{y^{2}}{2\sigma^{2}}\bigg\}\,dxdy=a^{2}\\\\\\\iint_{\mathbb{R}^{2}}\exp\bigg\{-\frac{(x^{2}+y^{2})}{2\sigma^{2}}\bigg\}\,dxdy=a^{2}

Podemos considerar \mathbb{R}^{2} como um círculo de raio infinito e utilizar a mudança de coordenadas polares. Isto é,

x=r\cos\theta\\y=r\sin\theta

Com r\in(0,\infty),\,\theta\in[0,2\pi]. Além disso,

\bullet\,\,x^{2}+y^{2}=r^{2}\\\\\bullet\,\,|\mathbf{J}|=r\,\,\,(\mathsf{jacobiano\,\,\,da\,\,\,transf.})

Logo,

a^{2}=\displaystyle\int\limits_{0}^{2\pi}\int\limits_{0}^{+\infty}\exp\{-\frac{r^{2}}{2\sigma^{2}}\}\,|\mathbf{J}|\,drd\theta\\\\\\a^{2}=\int\limits_{0}^{2\pi}\int\limits_{0}^{+\infty}\exp\bigg\{-\frac{r^{2}}{2\sigma^{2}}\bigg\}\,r\,drd\theta\\\\\\a^{2}=\int\limits_{0}^{2\pi}\bigg[\int\limits_{0}^{+\infty}r\,\exp\bigg\{-\frac{r^{2}}{2\sigma^{2}}\bigg\}\,dr\bigg]d\theta

Sabemos resolver a integral de dentro, já que

\displaystyle\frac{d}{dr}\bigg[-\sigma^{2}exp\bigg\{-\frac{r^{2}}{2\sigma^{2}}\bigg\}\bigg]=-\sigma^{2}\exp\bigg\{-\frac{r^{2}}{2\sigma^{2}}\bigg\}\cdot\bigg(-\frac{r}{\sigma^{2}}\bigg)=\\\\\\=r\exp\bigg\{-\frac{r^{2}}{2\sigma^{2}}\bigg\}

Então

\displaystyle\int\limits_{0}^{+\infty}r\exp\bigg\{-\frac{r^{2}}{2\sigma^{2}}\bigg\}\,dr=\bigg[-\sigma^{2}\exp\bigg\{-\frac{r^{2}}{2\sigma^{2}}\bigg\}\bigg]_{0}^{+\infty}=\\\\\\=\sigma^{2}-\lim\limits_{r\to+\infty}\exp\bigg\{-\frac{r^{2}}{2\sigma^{2}}\bigg\}=\sigma^{2}-0=\sigma^{2}

Substituindo na integral dupla:

a^{2}=\displaystyle\int\limits_{0}^{2\pi}\sigma^{2}d\theta\\\\\\a^{2}=\sigma^{2}\int\limits_{0}^{2\pi}d\theta\\\\\\a^{2}=\sigma^{2}(2\pi-0)\\\\\\a^{2}=2\pi\sigma^{2}

Tirando raiz quadrada dos dois lados da igualdade:

\sqrt{a^{2}}=\sqrt{2\pi\sigma^{2}}\\\\\\a=\sqrt{2\pi}\sqrt{\sigma^{2}}\\\\\\\boxed{\boxed{a=\sqrt{2\pi}|\sigma|}}

SubGui: Uau. Meus parabéns, amigo.
Camponesa: Uaauuu mesmo !!! rs ..
TTecnico: Demorou, mas finalmente alguem respondeu a minha pergunta, parabens!
TTecnico: tu deve ter tido bastante trabalho
Lukyo: Muito bom! :)
Niiya: Obrigado, gente :)
Perguntas interessantes