Matemática, perguntado por valderezmendes, 5 meses atrás

Prove que ( 1 − 1 /2) (1 − 1 /3) (1 − 1/ 4) · · · (1 − 1 /n) = (1/ n) , para todo n ∈ N, n ≥ 2.

Soluções para a tarefa

Respondido por Skoy
4

\Large\displaystyle\text{$\begin{gathered}\sf\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)  \left(1-\frac{1}{4}\right)\cdots\left(1-\frac{1}{n}\right) =\frac{1}{n}     \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\sf\left(\frac{1}{\diagup\!\!\!2}\right)\left(\frac{\diagup\!\!\!2}{\diagup\!\!\!3}\right)  \left(\frac{\diagup\!\!\!3}{\diagup\!\!\!4}\right)\diagup\!\!\!\cdots\left(\frac{\diagup\!\!\!(n-1)}{n}\right) =\frac{1}{n}     \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\sf \frac{1}{n}  =\frac{1}{n} \ \ \   (Ok)! \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\sf\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)  \left(1-\frac{1}{4}\right)\cdots\left(1-\frac{1}{n}\right) =\frac{1}{n} \ ,    \ \forall n\in \mathbb{N}\ , n \geq 2\end{gathered}$}


Lukyo: Isso aí! A expressão toda é um produto telescópico.
Skoy: sim :)
Kin07: Top demais
Perguntas interessantes