Provar a afirmação: Seja m e n dois inteiros. Se eles são consecutivos, então a soma deles, m + n, é um número ímpar.
Soluções para a tarefa
Respondido por
1
Suponha que m seja par, ou seja, um número na forma . Consequentemente, n será ímpar, ou seja, um número na forma . Somando os 2:
Percebe-se que a soma, neste caso, resultará em um número ímpar.
Agora vamos supor que m seja ímpar, ou seja, um número na forma . Consequentemente, n será par, ou seja, um número na forma .
Somando os 2:
Um número ímpar.
Ou seja, todos os valores possíveis para m e n resultariam em soma ímpar.
Perguntas interessantes
Matemática,
7 meses atrás
Matemática,
7 meses atrás
Geografia,
7 meses atrás
Ed. Física,
9 meses atrás
Matemática,
1 ano atrás