Matemática, perguntado por beatrizsaldanha205, 10 meses atrás

precisoo muito de ajudaaa!!!!!!!!!!
o quadrado de um numero natural é igual ao produto desse numero por 7 menos 3. qual é o numero


profcarlosroberto: n^2 = 7.n - 3 ou n^2 = 7.(n-3) ??

Soluções para a tarefa

Respondido por JUSCYNEIA
1

Resposta:

vamos chamá-lo de "x". Veja a equação:

2x² = 7x - 3

O dobro do quadrado (2x²) é igual ao produto (multiplicação) desse número por 7 (7x) menos 3 (-3).

Veja que isso é uma equação do segundo grau completa. Vamos transformá-la:

2x² - 7x + 3 = 0

Agora é só usar a fórmula para calcular o valor de "x". A fórmula é essa:

x = (-b ± √Δ) / 2a

Δ = b² - 4ac

P.S.: "Δ" lê-se "delta"; o valor de "a" é o número que multiplica o "x²"; o valor de "b" é o número que multiplica o "x"; o valor de "c" é o número que está sozinho (termo independente); não se esqueça do sinal, pois sem ele a conta não dá certa.

2x² - 7x + 3 = 0

Δ = b² - 4ac

Δ = (-7)² - 4 * 2 * 3

Δ = 49 - 8 * 3

Δ = 49 - 24

Δ = 25

x = (-b ± √Δ) / 2a

x = (-[-7] ± √25) / 2 * 2

x = (7 ± 5) / 4

Há dois valores de "x" quando o delta é maior que 1. Um pode ser calculado usando adição e o outro usando subtração é esse o motivo de ter o "±". Vamos lá:

x' = (7 + 5) / 4

x' = 12 / 4

x' = 3

x'' = (7 - 5) / 4

x'' = 2 / 4

x'' = 1/2

Então esse número pode ser tanto o 3 quanto o 1/2.

Espero ter ajudado!

Perguntas interessantes