Matemática, perguntado por matheus2099, 1 ano atrás

Preciso para hoje alguém sabe como resolver esta função?
f(x) (1/2)^x+1=8^x+2

Obs. Resposta com calculo.

Soluções para a tarefa

Respondido por thiagorocha503pe0u30
1
Oi!

 {(\frac{1}{2})}^{x + 1} = {8}^{(x + 2)}

Propriedade:
\boxed{{(\frac{1}{a})}^{x} = {a}^{-x} }

 {2}^{(- x - 1)} = {(2^3)}^{x + 2}

Propriedade:
 \boxed{{(a^x)}^{y} = a^{x * y}}

 {2}^{(- x - 1)} = {2}^{(3(x + 2))}
 {2}^{(- x - 1)} = {2}^{(3x + 6)}

Como as base são iguais podemos "cortar-las" e trabalhar apenas os expoente .

 - x - 1 = 3x + 6
 - x - 3x = 6 + 1
 - 4x = 7 (-1)
 4x = - 7
 \boxed{x = - \frac{7}{4}}

S = { -7/4}

Espero ter ajudado. bons estudos!
Perguntas interessantes