Matemática, perguntado por Usuário anônimo, 1 ano atrás

Preciso do desenvolvimento dessas contas, façam o máximo que conseguirem, pois vale bastante ponto.
Já tem o gabarito.

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
1
1) (3^x)^{x-1}=729

3^{x^2-x}=3^6

x^2-x-6=0

x=3 ou x=-2

S=\{-2,3\}


2) \sqrt{3}=27^x

3^{\frac{1}{2}}=(3^3)^x

3^{\frac{1}{2}}=3^{3x}

3x=\dfrac{1}{2}

x=\dfrac{1}{6}

S=\{\frac{1}{6}\}


3) 10^{2+x}=\sqrt[x]{1000^5}

10^{2+x}=\sqrt[xx]{(10^3)^5}

10^{2+x}=\sqrt[x]{10^{15}}

10^{2+x}=10^{\frac{15}{x}}

2+x=\dfrac{15}{x}

x^2+2x-15=0

x=3 ou x=-5

S=\{-5,3\}


4) \dfrac{1}{0,25}=(512)^{-x+1}

4=(2^9)^{-x+1}

2^2=2^{-9x+9}

-9x+9=2

-9x=-7

x=\dfrac{7}{9}

S=\{\frac{7}{9}\}


5) \dfrac{1}{\sqrt[5]{81}}=9^x

\dfrac{3^0}{\sqrt[5]{3^4}}=(3^2)^x

\dfrac{3^0}{3^{\frac{4}{5}}}=3^{2x}

3^{-\frac{4}{5}}=3^{2x}

2x=-\dfrac{4}{5}

x=-\dfrac{4}{10}=-\dfrac{2}{5}

S=\{\frac{-2}{5}\}


6) (0,7)^{3x+1}=\dfrac{343}{1000}

\left(\dfrac{7}{10}\right)^{3x+1}=\left(\dfrac{7}{10}\right)^3

3x+1=3

3x=2

x=\dfrac{2}{3}

S=\{\frac{2}{3}\}


7) \left[\left(\dfrac{5}{3}\right)^x\right]^x=\dfrac{625}{81}

\left(\dfrac{5}{3}\right)^{x^2}=\left(\dfrac{5}{3}\right)^4

x^2=4

x=\pm2

S=\{-2,2\}


8) 0,125=\left(\dfrac{1}{\sqrt{2}}\right)^{x-1}

\dfrac{1}{8}=\left(\dfrac{1}{\sqrt{2}}\right)^{x-1}

\left(\dfrac{1}{\sqrt{2}}\right)^{6}=\left(\dfrac{1}{\sqrt{2}}\right)^{x-1}

x-1=6

x=7

S=\{7\}


9) 2^{x}+2^{x-1}=48

2^{x}+2^{x}\cdot2^{-1}=48

2^{x}=y:

y+\dfrac{y}{2}=48

2y+y=96

3y=96

y=32

2^5=32

2^x=2^5

x=5

S=\{5\}


10) 2^{x+4}-2^{x+1}=56

2^x\cdot2^{4}-2^{x}\cdot2=56

2^x=y

16y-2y=56

14y=56

y=4

2^x=4

2^x=2^2

x=2

S=\{2\}.
Perguntas interessantes