Preciso de cálculo (Exercício sobre Teorema de Tales)
Dois postes perpendiculares ao solo estão a uma distância de 4 m um do outro, e um fio bem esticado de 5 m liga seus topos, como mostra a figura abaixo. Prolongando esse fio até prende – lo no solo, são utilizados mais 4 m de fio. Determine a distância entre o ponto onde o fio foi preso ao solo e o poste mais próximo a ele.
Soluções para a tarefa
Resposta:
A distância é de 3,2 M
Explicação passo-a passo:
4+5/x+4 = 4/x
9/x+4=4/x
9x=4(x+4)
9x=4x+16
9x-4x=16
5x=16
x=16/5
x= 3,2
Resposta:
Distância = 3,2 metros
Explicação passo-a-passo:
Considerando os dois postes como retas paralelas, cortadas pelas transversais FIO e SOLO, podemos utilizar o Teorema de Tales que diz:
“Feixes de retas paralelas cortadas ou intersectadas por segmentos transversais formam segmentos de retas proporcionalmente correspondentes”.
Significa que o FIO e o SOLO, formam segmentos de retas correspondentes:
Vamos considerar os Pontos A, B, C, D, E (conforme figura anexa)
AB = x
BC = 4 m
AD = 4 m
DE = 5 m
A razão (divisão) entre os segmentos de cada transversal serão iguais proporcionalmente (ou seja na mesma direção)
AB = AD
BC DE
x = 4 (agora vamos isolar o "x")
4 5
x = 4 . 4
5
x = 16 / 5
x = 3,2 m ⇒ distância do fio no solo até o poste mais próximo.
Veja a figura anexa.