PORR FAVOOR ME AJUDAA E PARA HOJE E UM TRABALHO E IMPORTANTE ME AJUDEMM!!
SISTEMA DE EQUAÇAO 2 GRAU
a)x + 2y = 12
x² + 2y = 42
b)xy - x = 3
x - 2y = 1
Soluções para a tarefa
Respondido por
0
a) x+2y=12
x^2+2y=42
6+2.3=12
36+6=42
x=6 e y=3
x^2+2y=42
6+2.3=12
36+6=42
x=6 e y=3
sdfsdfsdf1:
??????
Respondido por
1
Ola!!!!!!
Questão a:
![\left \{ {{x+2y=12} \atop { x^{2} +2y=42}}\ \textless \ =\ \textgreater \ \right. \left \{ {{2y=12-x} \atop { x^{2}+12-x=42}} \right. \ \textless \ =\ \textgreater \ \left \{ {{--------} \atop { x^{2} -x=42-12}} \right. \ \textless \ =\ \textgreater \ \left \{ {{-------} \atop { x^{2}-x-30=0}} \right. \left \{ {{x+2y=12} \atop { x^{2} +2y=42}}\ \textless \ =\ \textgreater \ \right. \left \{ {{2y=12-x} \atop { x^{2}+12-x=42}} \right. \ \textless \ =\ \textgreater \ \left \{ {{--------} \atop { x^{2} -x=42-12}} \right. \ \textless \ =\ \textgreater \ \left \{ {{-------} \atop { x^{2}-x-30=0}} \right.](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7Bx%2B2y%3D12%7D+%5Catop+%7B+x%5E%7B2%7D+%2B2y%3D42%7D%7D%5C+%5Ctextless+%5C+%3D%5C+%5Ctextgreater+%5C++%5Cright.++%5Cleft+%5C%7B+%7B%7B2y%3D12-x%7D+%5Catop+%7B+x%5E%7B2%7D%2B12-x%3D42%7D%7D+%5Cright.+%5C+%5Ctextless+%5C+%3D%5C+%5Ctextgreater+%5C++%5Cleft+%5C%7B+%7B%7B--------%7D+%5Catop+%7B+x%5E%7B2%7D+-x%3D42-12%7D%7D+%5Cright.+%5C+%5Ctextless+%5C+%3D%5C+%5Ctextgreater+%5C++%5Cleft+%5C%7B+%7B%7B-------%7D+%5Catop+%7B+x%5E%7B2%7D-x-30%3D0%7D%7D+%5Cright.)
Resolvendo a equacão quadratica:
![x^{2} -x-30=0 x^{2} -x-30=0](https://tex.z-dn.net/?f=+x%5E%7B2%7D+-x-30%3D0)
![(x+5)(x-6)=0 (x+5)(x-6)=0](https://tex.z-dn.net/?f=%28x%2B5%29%28x-6%29%3D0)
∨ ![x=6 x=6](https://tex.z-dn.net/?f=x%3D6)
substituindo o valor de x na primeira linha:
se x=-5 se x=6
2y=12-x 2y=12-x
2y=12-(-5) 2y=12-6
2y=12+5 2y=6
2y=17 y=6/2
y=17/2 y=3
Resposta: S:{(-5;17/2),(6;3)}
Questão b:
![\left \{ {{xy-x=3} \atop {x-2y=1}}\ \textless \ =\ \textgreater \ \right. \left \{ {{(1+2y)y-(1+2y)=3} \atop {x=1+2y}} \right.\ \textless \ =\ \textgreater \ \left \{ {{y+2y^{2}-1-2y =3} \atop {--------}} \left \{ {{xy-x=3} \atop {x-2y=1}}\ \textless \ =\ \textgreater \ \right. \left \{ {{(1+2y)y-(1+2y)=3} \atop {x=1+2y}} \right.\ \textless \ =\ \textgreater \ \left \{ {{y+2y^{2}-1-2y =3} \atop {--------}}](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7Bxy-x%3D3%7D+%5Catop+%7Bx-2y%3D1%7D%7D%5C+%5Ctextless+%5C+%3D%5C+%5Ctextgreater+%5C+%5Cright.++%5Cleft+%5C%7B+%7B%7B%281%2B2y%29y-%281%2B2y%29%3D3%7D+%5Catop+%7Bx%3D1%2B2y%7D%7D+%5Cright.%5C+%5Ctextless+%5C+%3D%5C+%5Ctextgreater+%5C++%5Cleft+%5C%7B+%7B%7By%2B2y%5E%7B2%7D-1-2y+%3D3%7D+%5Catop+%7B--------%7D%7D)
![\ \textless \ =\ \textgreater \ \right. \left \{ {{2 y^{2}-y-4=0} \atop {------}} \right. \ \textless \ =\ \textgreater \ \right. \left \{ {{2 y^{2}-y-4=0} \atop {------}} \right.](https://tex.z-dn.net/?f=%5C+%5Ctextless+%5C+%3D%5C+%5Ctextgreater+%5C+%5Cright.++%5Cleft+%5C%7B+%7B%7B2+y%5E%7B2%7D-y-4%3D0%7D+%5Catop+%7B------%7D%7D+%5Cright.+)
Resolvendo a equacão quadratica:
![2 y^{2}-y-4=0 2 y^{2}-y-4=0](https://tex.z-dn.net/?f=2+y%5E%7B2%7D-y-4%3D0)
Δ=b²-4ac
Δ=(-1)²-4*2*(-4)
Δ=1+32
Δ=33
![x_{1}= \frac{-b- \sqrt{ b^{2}-4ac}}{2a}= \frac{1- \sqrt{33}}{2*2} = \frac{1- \sqrt{33}}{4} x_{1}= \frac{-b- \sqrt{ b^{2}-4ac}}{2a}= \frac{1- \sqrt{33}}{2*2} = \frac{1- \sqrt{33}}{4}](https://tex.z-dn.net/?f=+x_%7B1%7D%3D+%5Cfrac%7B-b-+%5Csqrt%7B+b%5E%7B2%7D-4ac%7D%7D%7B2a%7D%3D+%5Cfrac%7B1-+%5Csqrt%7B33%7D%7D%7B2%2A2%7D+%3D+%5Cfrac%7B1-+%5Csqrt%7B33%7D%7D%7B4%7D+)
![x_{2}= \frac{-b+ \sqrt{ b^{2}-4ac}}{2a}= \frac{1+ \sqrt{33}}{2*2} = \frac{1+ \sqrt{33}}{4} x_{2}= \frac{-b+ \sqrt{ b^{2}-4ac}}{2a}= \frac{1+ \sqrt{33}}{2*2} = \frac{1+ \sqrt{33}}{4}](https://tex.z-dn.net/?f=+x_%7B2%7D%3D+%5Cfrac%7B-b%2B+%5Csqrt%7B+b%5E%7B2%7D-4ac%7D%7D%7B2a%7D%3D+%5Cfrac%7B1%2B+%5Csqrt%7B33%7D%7D%7B2%2A2%7D+%3D+%5Cfrac%7B1%2B+%5Csqrt%7B33%7D%7D%7B4%7D+)
substituindo o valor de x na segunda linha:
se x=![\frac{1- \sqrt{33}}{4} \frac{1- \sqrt{33}}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B1-+%5Csqrt%7B33%7D%7D%7B4%7D+)
![x-2y=1 x-2y=1](https://tex.z-dn.net/?f=x-2y%3D1)
![2y=x-1 2y=x-1](https://tex.z-dn.net/?f=2y%3Dx-1)
![y= \frac{x-1}{2} y= \frac{x-1}{2}](https://tex.z-dn.net/?f=y%3D+%5Cfrac%7Bx-1%7D%7B2%7D)
![y= \frac{ \frac{1- \sqrt{33}-1}{4} }{2}=- \frac{ \sqrt{33}}{4} * \frac{1}{2} =- \frac{ \sqrt{33}}{8} y= \frac{ \frac{1- \sqrt{33}-1}{4} }{2}=- \frac{ \sqrt{33}}{4} * \frac{1}{2} =- \frac{ \sqrt{33}}{8}](https://tex.z-dn.net/?f=y%3D+%5Cfrac%7B+%5Cfrac%7B1-+%5Csqrt%7B33%7D-1%7D%7B4%7D+%7D%7B2%7D%3D-+%5Cfrac%7B+%5Csqrt%7B33%7D%7D%7B4%7D+%2A+%5Cfrac%7B1%7D%7B2%7D+%3D-++%5Cfrac%7B+%5Csqrt%7B33%7D%7D%7B8%7D)
se x=![\frac{1+ \sqrt{33}}{4} \frac{1+ \sqrt{33}}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B1%2B+%5Csqrt%7B33%7D%7D%7B4%7D+)
![x-2y=1 x-2y=1](https://tex.z-dn.net/?f=x-2y%3D1)
![2y=x-1 2y=x-1](https://tex.z-dn.net/?f=2y%3Dx-1)
![y= \frac{x-1}{2} y= \frac{x-1}{2}](https://tex.z-dn.net/?f=y%3D+%5Cfrac%7Bx-1%7D%7B2%7D)
![y= \frac{ \frac{1+ \sqrt{33}-1}{4} }{2}=\frac{ \sqrt{33}}{4} * \frac{1}{2} =\frac{ \sqrt{33}}{8} y= \frac{ \frac{1+ \sqrt{33}-1}{4} }{2}=\frac{ \sqrt{33}}{4} * \frac{1}{2} =\frac{ \sqrt{33}}{8}](https://tex.z-dn.net/?f=y%3D+%5Cfrac%7B+%5Cfrac%7B1%2B+%5Csqrt%7B33%7D-1%7D%7B4%7D+%7D%7B2%7D%3D%5Cfrac%7B+%5Csqrt%7B33%7D%7D%7B4%7D+%2A+%5Cfrac%7B1%7D%7B2%7D+%3D%5Cfrac%7B+%5Csqrt%7B33%7D%7D%7B8%7D)
Resposta: S:{(1-√33/4;-√33/8),(1+√33/4;√33/8)}
Questão a:
Resolvendo a equacão quadratica:
substituindo o valor de x na primeira linha:
se x=-5 se x=6
2y=12-x 2y=12-x
2y=12-(-5) 2y=12-6
2y=12+5 2y=6
2y=17 y=6/2
y=17/2 y=3
Resposta: S:{(-5;17/2),(6;3)}
Questão b:
Resolvendo a equacão quadratica:
Δ=b²-4ac
Δ=(-1)²-4*2*(-4)
Δ=1+32
Δ=33
substituindo o valor de x na segunda linha:
se x=
se x=
Resposta: S:{(1-√33/4;-√33/8),(1+√33/4;√33/8)}
3x + 2y = 0
b)x=1 + y
x y
- + - = 5
y x -
2
a letra b e fraçao
Perguntas interessantes
Sociologia,
11 meses atrás
História,
11 meses atrás
Ed. Física,
11 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás