Matemática, perguntado por alaskatrindade, 1 ano atrás

Por Favorrr me ajudem!!
Resolva em R as equações abaixo

a) 2 cos (x) - raiz quadrada de 3 =0

b) 4 sen (t) - raiz quadrada de 3 = 2 sen (t)

c)
 \frac{ \cos( \alpha ) }{  \sqrt{2} }  +  \frac{1}{2}  = 0
d)
 \frac{1}{3}  \tan(x)  =  \frac{1}{ \sqrt{3} }

Soluções para a tarefa

Respondido por MATHSPHIS
3

Resposta:

a) \ 2cos(x)-\sqrt3=0\\2cos(x)=\sqrt3\\cos(x)=\frac{\sqrt3}{2}\\S=\{x\in R/x=\frac{\pi}{6}+2k\pi \ ou \ x=\frac{11\pi}{6}+2k\pi\}

b) \ 4sen(t)-\sqrt3=2sen(t)\\4sen(t)-2sen(t)=\sqrt3\\2sen(t)=\sqrt3\\sen(t)=\frac{\sqrt3}{2}\\S=\{t \in R/t=\frac{\pi}{3}+2k\pi \ ou \ t=\frac{2\pi}{3}+2k\pi\}

c) \  \frac{cos(\alpha)}{\sqrt2}+\frac{1}{2}=0\\\\\frac{cos(\alpha)}{\sqrt2}=-\frac{1}{2}\\cos(\alpha)=-\frac{\sqrt2}{2}\\S=\{x \in R/\alpha=\frac{3\pi}{2}+2k\pi \ ou \ \alpha=\frac{5\pi}{2}+2k\pi\}

d) \ \frac{1}{3}tan(x)=\frac{1}{\sqrt3}\\tg(x)=\frac{3}{\sqrt3}=\sqrt3\\S=\{x \in R/  x=\frac{\pi}{3}+2k\pi \ ou \ x=\frac{4\pi}{3}+2k\pi\}




Respondido por Usuário anônimo
0

Explicação passo-a-passo:

a)

\sf 2cos~(x)-\sqrt{3}=0

\sf 2cos~(x)=\sqrt{3}

\sf cos~(x)=\dfrac{\sqrt{3}}{2}

\sf x=30^{\circ}~\Rightarrow~x=\dfrac{\pi}{6}~rad

\sf x=330^{\circ}~\Rightarrow~x=\dfrac{11\pi}{6}~rad

b)

\sf 4sen~(t)-\sqrt{3}=2sen(t)

\sf 4sen~(t)-2sen~(t)=\sqrt{3}

\sf 2sen~(t)=\sqrt{3}

\sf sen~(t)=\dfrac{\sqrt{3}}{2}

\sf x=60^{\circ}~\Rightarrow~x=\dfrac{\pi}{3}~rad

\sf x=120^{\circ}~\Rightarrow~x=\dfrac{2\pi}{3}~rad

c)

\sf \dfrac{cos~(\alpha)}{\sqrt{2}}+\dfrac{1}{2}=0

\sf cos~(\alpha)+\dfrac{\sqrt{2}}{2}=0

\sf cos~(\alpha)=\dfrac{-\sqrt{2}}{2}

\sf \alpha=135^{\circ}~\Rightarrow~\alpha=\dfrac{3\pi}{4}~rad

\sf \alpha=225^{\circ}~\Rightarrow~\alpha=\dfrac{5\pi}{4}~rad

d)

\sf \dfrac{tg~(x)}{3}=\dfrac{1}{\sqrt{3}}

\sf \dfrac{tg~(x)}{3}=\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{\sqrt{3}}

\sf \dfrac{tg~(x)}{3}=\dfrac{\sqrt{3}}{3}

\sf \dfrac{tg~(x)}{3}=3\cdot\dfrac{\sqrt{3}}{3}

\sf \dfrac{tg~(x)}{3}=\sqrt{3}

\sf x=60^{\circ}~\Rightarrow~x=\dfrac{\pi}{3}~rad

\sf x=240^{\circ}~\Rightarrow~x=\dfrac{4\pi}{3}~rad

Perguntas interessantes