POR FAVOR RAPIDOOO
Um garrafeiro de metal é composto por 3 prismas hexagonais regulares com 30 cm de altura e hexágonos regulares de 6 cm de aresta.
De acordo com a imagem, pode-se concluir que o comprimento de material utilizado na confecção do garrafeiro, em metros, é de:
A
12,96
B
8,50
C
6,60
D
5,70
E
4,85
Soluções para a tarefa
O material usado tinha 570 cm de tamanho:
O primeiro passo é contar a quantidade de arestas que aparecem nas bases (superior e inferior) e nas laterais (barras verticais) do prisma. Isto fica fácil se você utilizar a simetria da figura.
Vamos começar pelas bases.
Observando apenas um dos hexágonos no topo, você pode perceber que 2 arestas do topo interceptam a dos outros hexágonos e que as outras 4 arestas estão livres (não fazem interseção com nenhuma outra figura).
Por simetria, isto também vale para os outros dois hexágonos.
Portanto vamos ter 3x4 = 12 "arestas livres" (sem interseção)
Isto resulta em 12 arestas da base.
Somando as 3 arestas "centrais" totalizamos 15 arestas em cada base.
Como temos 2 bases (uma em cima e uma em baixo), temos um total de 30 arestas
Agora vamos analisar as lateriais (barras verticais):
Usando a simetria, perceba que um único hexágono compartilha 3 barras verticais com os demais hexágonos. Logo vemos que as outras 3 barras são livres.
Então temos 3x3 = 9 barras verticais livres.
Observando o centro da figura, você percebe que ele é formado por 4 barras verticais onde uma é interseção dos 3 hexágonos e as outras 3 são interseções de apenas 2 hexágonos.
Somando 4 com 9 obtemos 4+9 = 13.
Resultado:
Arestas das Bases = 30
Arestas verticais = 13
Lembre agora que elas têm medidas diferentes:
altura = 30 cm
aresta = 6 cm
Logo o material usado tinha 570 cm de tamanho:
Para verificar, basta efetuar as contas:
13x30cm + 30x6cm = 570