Soluções para a tarefa
Respondido por
1
Verificar se a seguinte relação é uma transformação linear:
![\begin{array}{cl} T:&\mathbb{R}^{2}\to \mathbb{R}^{2}\\ &(x,\,y)\mapsto (\mathrm{sen\,}x,\,y) \end{array} \begin{array}{cl} T:&\mathbb{R}^{2}\to \mathbb{R}^{2}\\ &(x,\,y)\mapsto (\mathrm{sen\,}x,\,y) \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bcl%7D+T%3A%26amp%3B%5Cmathbb%7BR%7D%5E%7B2%7D%5Cto+%5Cmathbb%7BR%7D%5E%7B2%7D%5C%5C+%26amp%3B%28x%2C%5C%2Cy%29%5Cmapsto+%28%5Cmathrm%7Bsen%5C%2C%7Dx%2C%5C%2Cy%29+%5Cend%7Barray%7D)
Verificação da (não-)linearidade:
Sejam
e ![\mathbf{u_{2}}=(x_{2},\,y_{2}) \mathbf{u_{2}}=(x_{2},\,y_{2})](https://tex.z-dn.net/?f=%5Cmathbf%7Bu_%7B2%7D%7D%3D%28x_%7B2%7D%2C%5C%2Cy_%7B2%7D%29)
vetores de![\mathbb{R}^{2}. \mathbb{R}^{2}.](https://tex.z-dn.net/?f=%5Cmathbb%7BR%7D%5E%7B2%7D.)
Temos então que
![T(\mathbf{u_{1}}+\mathbf{u_{2}})\\ \\ =T(x_{1}+x_{2},\,y_{1}+y_{2})\\ \\ =(\mathrm{sen\,}(x_{1}+x_{2}),\,y_{1}+y_{2})\\ \\ =(\mathrm{sen\,}x_{1}\cdot \cos x_{2}+\mathrm{sen\,}x_{2}\cdot \cos x_{1},\,y_{1}+y_{2})\\ \\ \\ \neq T(\mathbf{u_{1}})+T({\mathbf{u_{2}}})\\ \\ =T(x_{1},\,y_{1})+T(x_{2},\,y_{2})\\ \\ =(\mathrm{sen\,}x_{1},\,y_{1})+(\mathrm{sen\,}x_{2},\,y_{2})\\ \\ =(\mathrm{sen\,}x_{1}+\mathrm{sen\,}x_{2},\,y_{1}+y_{2}) T(\mathbf{u_{1}}+\mathbf{u_{2}})\\ \\ =T(x_{1}+x_{2},\,y_{1}+y_{2})\\ \\ =(\mathrm{sen\,}(x_{1}+x_{2}),\,y_{1}+y_{2})\\ \\ =(\mathrm{sen\,}x_{1}\cdot \cos x_{2}+\mathrm{sen\,}x_{2}\cdot \cos x_{1},\,y_{1}+y_{2})\\ \\ \\ \neq T(\mathbf{u_{1}})+T({\mathbf{u_{2}}})\\ \\ =T(x_{1},\,y_{1})+T(x_{2},\,y_{2})\\ \\ =(\mathrm{sen\,}x_{1},\,y_{1})+(\mathrm{sen\,}x_{2},\,y_{2})\\ \\ =(\mathrm{sen\,}x_{1}+\mathrm{sen\,}x_{2},\,y_{1}+y_{2})](https://tex.z-dn.net/?f=T%28%5Cmathbf%7Bu_%7B1%7D%7D%2B%5Cmathbf%7Bu_%7B2%7D%7D%29%5C%5C+%5C%5C+%3DT%28x_%7B1%7D%2Bx_%7B2%7D%2C%5C%2Cy_%7B1%7D%2By_%7B2%7D%29%5C%5C+%5C%5C+%3D%28%5Cmathrm%7Bsen%5C%2C%7D%28x_%7B1%7D%2Bx_%7B2%7D%29%2C%5C%2Cy_%7B1%7D%2By_%7B2%7D%29%5C%5C+%5C%5C+%3D%28%5Cmathrm%7Bsen%5C%2C%7Dx_%7B1%7D%5Ccdot+%5Ccos+x_%7B2%7D%2B%5Cmathrm%7Bsen%5C%2C%7Dx_%7B2%7D%5Ccdot+%5Ccos+x_%7B1%7D%2C%5C%2Cy_%7B1%7D%2By_%7B2%7D%29%5C%5C+%5C%5C+%5C%5C+%5Cneq+T%28%5Cmathbf%7Bu_%7B1%7D%7D%29%2BT%28%7B%5Cmathbf%7Bu_%7B2%7D%7D%7D%29%5C%5C+%5C%5C+%3DT%28x_%7B1%7D%2C%5C%2Cy_%7B1%7D%29%2BT%28x_%7B2%7D%2C%5C%2Cy_%7B2%7D%29%5C%5C+%5C%5C+%3D%28%5Cmathrm%7Bsen%5C%2C%7Dx_%7B1%7D%2C%5C%2Cy_%7B1%7D%29%2B%28%5Cmathrm%7Bsen%5C%2C%7Dx_%7B2%7D%2C%5C%2Cy_%7B2%7D%29%5C%5C+%5C%5C+%3D%28%5Cmathrm%7Bsen%5C%2C%7Dx_%7B1%7D%2B%5Cmathrm%7Bsen%5C%2C%7Dx_%7B2%7D%2C%5C%2Cy_%7B1%7D%2By_%7B2%7D%29)
A segunda alternativa é a correta, pois é a que segue o raciocínio acima.
Verificação da (não-)linearidade:
Sejam
vetores de
Temos então que
A segunda alternativa é a correta, pois é a que segue o raciocínio acima.
Rosana2014:
Boa Tarde! Obrigada pela ajuda.
Perguntas interessantes
Ed. Física,
1 ano atrás
Administração,
1 ano atrás
Química,
1 ano atrás
História,
1 ano atrás
Química,
1 ano atrás