Matemática, perguntado por Meu1Nome1eNeto, 10 meses atrás

Por favor me ajudem com essa integral:

\int{\frac{dx}{2x^{2}+5 } }

Soluções para a tarefa

Respondido por Lukyo
2

Resposta:  \mathsf{\dfrac{\sqrt{10}}{10}\,arctg\!\left(\dfrac{2x}{\sqrt{10}}\right)+C.}

Explicação passo-a-passo:

Calcular a integral indefinida:

    \mathsf{\displaystyle\int\frac{1}{2x^2+5}\,dx}

Multiplique o numerador e o denominador por 2:

    \mathsf{=\displaystyle\int\frac{2}{2\cdot (2x^2+5)}\,dx}\\\\\\ \mathsf{=\displaystyle\int\frac{2}{4x^2+10}\,dx}\\\\\\ \mathsf{=\displaystyle \int\frac{1}{(2x)^2+(\sqrt{10})^2}\cdot 2\,dx}

Faça a seguinte substituição trigonométrica:

    \mathsf{2x=\sqrt{10}\,tg\,\theta\quad\Longrightarrow\quad 2\,dx=\sqrt{10}\,sec^2\,\theta\,d\theta}\\\\\\ \mathsf{\Longleftrightarrow\quad tg\,\theta=\dfrac{2x}{\sqrt{10}}}\\\\\\ \mathsf{\Longrightarrow\quad \theta=arctg\!\left(\dfrac{2x}{\sqrt{10}}\right),~~com~-\,\dfrac{\pi}{2}<\theta<\dfrac{\pi}{2}}

Além disso, temos

    \mathsf{(2x)^2+(\sqrt{10})^2=(\sqrt{10}\,tg\,\theta)^2+(\sqrt{10})^2}\\\\ \mathsf{\Longleftrightarrow\quad (2x)^2+(\sqrt{10})^2=10\,tg^2\,\theta+10}\\\\ \mathsf{\Longleftrightarrow\quad (2x)^2+(\sqrt{10})^2=10\,(tg^2+1)}\\\\ \mathsf{\Longleftrightarrow\quad (2x)^2+(\sqrt{10})^2=10\,sec^2\,\theta\qquad\checkmark}

Substituindo, a integral fica

    \mathsf{\displaystyle=\int \frac{1}{10\,sec^2\,\theta}\cdot \sqrt{10}\,sec^2\,\theta\,d\theta}\\\\\\ \mathsf{\displaystyle=\frac{\sqrt{10}}{10}\int 1\,d\theta}\\\\\\ \mathsf{=\dfrac{\sqrt{10}}{10}\,\theta+C}\\\\\\ \mathsf{=\dfrac{\sqrt{10}}{10}\,arctg\!\left(\dfrac{2x}{\sqrt{10}}\right)+C\quad\longleftarrow\quad resposta.}

Dúvidas? Comente.

Bons estudos! :-)

Perguntas interessantes