Matemática, perguntado por carlosmarquesm57, 9 meses atrás

Por favor alguém pode me ajudar ​

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
1

Explicação passo-a-passo:

1)

Lembre-se que:

\sf log_{b}~(a\cdot c)=log_{b}~a+log_{b}~c

\sf log_{b}~a^m=m\cdot log_{b}~a

a)

\sf log~30=log~(2\cdot3\cdot5)

\sf log~30=log~2+log~3+log~5

\sf log~30=0,30+0,47+0,69

\sf \red{log~30=1,46}

b)

\sf log~125=log~5^3

\sf log~125=3\cdot log~5

\sf log~125=3\cdot0,69

\sf \red{log~125=2,07}

c)

\sf log~100=log~(2^2\cdot5^2)

\sf log~100=log~2^2+log~5^2

\sf log~100=2\cdot log~2+2\cdot log~5

\sf log~100=2\cdot0,30+2\cdot0,69

\sf log~100=0,60+1,38

\sf \red{log~100=1,98}

d)

\sf log~81=log~3^4

\sf log~81=4\cdot log~3

\sf log~81=4\cdot0,47

\sf \red{log~81=1,88}

e)

\sf log~24=log~(2^3\cdot3)

\sf log~24=log~2^3+log~3

\sf log~24=3\cdot log~2+log~3

\sf log~24=3\cdot0,30+0,47

\sf log~24=0,90+0,47

\sf \red{log~24=1,37}

f)

\sf log~18=log~(2\cdot3^2)

\sf log~18=log~2+log~3^2

\sf log~18=log~2+2\cdot log~3

\sf log~18=0,30+2\cdot0,47

\sf log~18=0,30+0,94

\sf \red{log~18=1,24}

g)

\sf log~8=log~2^3

\sf log~8=3\cdot log~2

\sf log~8=3\cdot0,30

\sf \red{log~8=0,90}

h)

\sf log~10=log~(2\cdot5)

\sf log~10=log~2+log~5

\sf log~10=0,30+0,69

\sf \red{log~10=0,99}

i)

\sf log~16=log~2^4

\sf log~16=4\cdot log~2

\sf log~16=4\cdot0,30

\sf \red{log~16=1,20}

j)

\sf log~12=log~(2^2\cdot3)

\sf log~12=log~2^2+log~3

\sf log~12=2\cdot log~2+log~3

\sf log~12=2\cdot0,30+0,47

\sf log~12=0,60+0,47

\sf \red{log~12=1,07}

2)

\sf log_{2}~(-x^2+32)=4

\sf -x^2+32=2^4

\sf -x^2+32=16

\sf -x^2=16-32

\sf -x^2=-16~~~~\cdot(-1)

\sf x^2=16

\sf x=\pm\sqrt{16}

\sf \red{x'=4}

\sf \red{x"=-4}

São 4 centros culturais

Perguntas interessantes