Física, perguntado por beatrizinhamachadinh, 11 meses atrás

POR FAVOR ALGUÉM ME AJUDA!

Um automóvel descreve uma trajetória circular de raio 80m em movimento uniformemente variado. No instante t0= 0 s, sua velocidade é de 4 m/s e sua aceleração escalar é de 3,5 m/s2 no mesmo sentido da velocidade inicial. Calcule a velocidade e a aceleração cetrípeta do automóvel no instante t= 4s

Soluções para a tarefa

Respondido por DouglasOJ
2

Resposta:

v = 18 m/s; a(centrí.) ≈ 4 m/s².

Explicação:

Sabemos que, para um movimento uniformemente variável (MUV), com as condições dadas no contexto do problema, podemos utilizar a equação:

v = v₀ + a.t

Encontraremos a velocidade final desse automóvel dentro do instante de tempo t = 4 s na trajetória circular. Logo, substituindo os dados fornecidos na equação do MUV:

v = (4 m/s) + (3,5 m/s²)(4 s)

v = 18 m/s.

Agora que encontramos a velocidade adquirida pelo carro no instante de tempo de 4 s, podemos calcular a aceleração centrípeta do automóvel nesse trajeto circular, que impede de fazer o carro se desprender da pista durante o movimento. Podemos utilizar a equação da aceleração centrípeta  a(centrí.) em função da velocidade v e do raio R:

a(centrí.) = v²/R

a(centrí.) = (18 m/s)²/(80 m)

a(centrí.) = 4,05 m/s² ≈ 4 m/s².

A velocidade e a aceleração centrípeta do automóvel no instante t= 4s é de, 18 m/s e 4 m/s², respectivamente.

Perguntas interessantes