Matemática, perguntado por andreluizferraz2000, 1 ano atrás

Poderia me ajudar com passo a passo.
P.S: Resposta é letra B

Anexos:

Soluções para a tarefa

Respondido por gabf9
1

Resposta:

x= 30 // (x=-5 é descardo)

Explicação passo-a-passo:

Nesse exercício, a sacada é conseguir transformar o 2 em logaritmo, depois disso fica simples. Então, temos que 2 pode ser escrito como log10², uma vez que pela propriedade

log₁₀10² = x ⇒ 10ˣ = 10² ⇒ x = 2

Sendo assim, ficamos com:

log (x+2) + log10² = log (4x²-400)

Pela propriedade dos logaritmos ( logₐx  + logₐy = logₐx ·y ) temos

log [(x+2)·10²] = log (4x²-400)

Com os dois lados devidamente trabalhados, eliminamos o log de ambos os lados ficando com:

[(x+2)·100] = (4x²-400)

⇒ 100x+200 = 4x² - 400

⇒ 4x² - 100x - 600 = 0

Resolvendo por soma e produto ou Bhaskara, você tem as raízes

x = - 5 ou x = 30.

Basta verificar que o - 5 não é compatível pois

log ( x + 2 ) > 0  e se substituirmos por -5 temos log ( -5 + 2 ) = log -3

Qualquer duvida eu edito, mas acho que ficou bem tranquilo.


andreluizferraz2000: Obrigado, me ajudou bastante, por acaso sempre que aparecer numero solto sem log, eu posso colocar ele elevando um 10? Por exemplo, tem um -3 solto que nem o 2 do exercicio, posso dizer q 10^-3?
gabf9: Você faz a primeira propriedade do log, no caso ia ficar logx na base 10 = -3, ai x ficaria log10^-3 =
Perguntas interessantes