Podem me ajudar nessa questão? Não consigo chegar na resposta do livro.
f: R→R é definida por
, calcule

Tentei responder e cheguei nessa resposta:

Porém a resposta do livro é
Soluções para a tarefa
Respondido por
1
Olá
![\displaystyle\mathsf{f(x)~=~ \frac{2}{x^2+1} }\\\\\\\mathsf{f(1+ \sqrt{2})=? }\\\\\\\\\\\mathsf{f(1+ \sqrt{2} )~=~ \frac{2}{(1+ \sqrt{2} )^2+1} }\\\\\\\mathsf{f(1+ \sqrt{2} )~=~ \frac{2}{(1+ \sqrt{2} )\cdot(1+ \sqrt{2} )+1} }\\\\\\\mathsf{f(1+ \sqrt{2} )~=~ \frac{2}{(1+ \sqrt{2} )\cdot(1+ \sqrt{2} )+1} }\\\\\\\mathsf{f(1+ \sqrt{2} )~=~ \frac{2}{[1+ \sqrt{2}+ \sqrt{2}+ (\sqrt{2})^2 ]+1} }\\\\\\\mathsf{f(1+ \sqrt{2} )~=~ \frac{2}{[1+ 2\sqrt{2}+2 ]+1} } \displaystyle\mathsf{f(x)~=~ \frac{2}{x^2+1} }\\\\\\\mathsf{f(1+ \sqrt{2})=? }\\\\\\\\\\\mathsf{f(1+ \sqrt{2} )~=~ \frac{2}{(1+ \sqrt{2} )^2+1} }\\\\\\\mathsf{f(1+ \sqrt{2} )~=~ \frac{2}{(1+ \sqrt{2} )\cdot(1+ \sqrt{2} )+1} }\\\\\\\mathsf{f(1+ \sqrt{2} )~=~ \frac{2}{(1+ \sqrt{2} )\cdot(1+ \sqrt{2} )+1} }\\\\\\\mathsf{f(1+ \sqrt{2} )~=~ \frac{2}{[1+ \sqrt{2}+ \sqrt{2}+ (\sqrt{2})^2 ]+1} }\\\\\\\mathsf{f(1+ \sqrt{2} )~=~ \frac{2}{[1+ 2\sqrt{2}+2 ]+1} }](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7Bf%28x%29%7E%3D%7E+%5Cfrac%7B2%7D%7Bx%5E2%2B1%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%281%2B+%5Csqrt%7B2%7D%29%3D%3F+%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%281%2B+%5Csqrt%7B2%7D+%29%7E%3D%7E+%5Cfrac%7B2%7D%7B%281%2B+%5Csqrt%7B2%7D+%29%5E2%2B1%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%281%2B+%5Csqrt%7B2%7D+%29%7E%3D%7E+%5Cfrac%7B2%7D%7B%281%2B+%5Csqrt%7B2%7D+%29%5Ccdot%281%2B+%5Csqrt%7B2%7D+%29%2B1%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%281%2B+%5Csqrt%7B2%7D+%29%7E%3D%7E+%5Cfrac%7B2%7D%7B%281%2B+%5Csqrt%7B2%7D+%29%5Ccdot%281%2B+%5Csqrt%7B2%7D+%29%2B1%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%281%2B+%5Csqrt%7B2%7D+%29%7E%3D%7E+%5Cfrac%7B2%7D%7B%5B1%2B+%5Csqrt%7B2%7D%2B+%5Csqrt%7B2%7D%2B+%28%5Csqrt%7B2%7D%29%5E2+++%5D%2B1%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%281%2B+%5Csqrt%7B2%7D+%29%7E%3D%7E+%5Cfrac%7B2%7D%7B%5B1%2B+2%5Csqrt%7B2%7D%2B2+++%5D%2B1%7D+%7D)

Multiplica pelo conjugado

Multiplica pelo conjugado
Perguntas interessantes