Matemática, perguntado por Longolarissam, 8 meses atrás

platão descobriu que só existem cinco sólidos geométricos em que todas as faces são formadas pelo mesmo tipo de polígono regular . Quantas faces tem um octaedro ?

Soluções para a tarefa

Respondido por ocraniodobrainly
3

Resposta:

Quando estudamos os poliedros, nos deparamos com os sólidos de Platão como caso particular. Para ser um sólido de Platão, o poliedro precisa satisfazer três condições:

ser convexo;

todas as faces possuírem a mesma quantidade de arestas;

todos os vértices serem extremidades de uma mesma quantidade de arestas.

Vários filósofos buscaram compreender a origem do Universo, e Platão viu na geometria espacial a explicação para essa origem. Os sólidos de Platão são:

tetraedro;

hexaedro;

octaedro;

dodecaedro;

icosaedro.

Todos eles são considerados polígonos regulares, já que as suas arestas e suas faces são todas congruentes. Os sólidos de Platão respeitam a relação de Euler, que relaciona o número de vértices, faces e arestas pela fórmula V + F = A + 2.

Leia também: Quais as diferenças entre as figuras planas e as espaciais?

Sólidos de Platão

Poliedros regulares

A busca por poliedros regulares é recorrente, pois é mais fácil trabalhar com eles. Um poliedro é classificado como regular se ele possui todas as faces formadas por um mesmo polígono congruente. Quando isso ocorre, os ângulos e arestas também são congruentes.

Os sólidos de Platão são casos particulares de poliedros regulares. O cubo, por exemplo, que é um sólido de Platão, possui todas as suas faces formadas por quadrados congruentes. Dos cinco sólidos de Platão, três são formados por faces triangulares com triângulos congruentes, um é formado por faces quadradas e o outro é formado por faces pentagonais.

Quais são os sólidos de Platão?

Platão foi um filósofo e matemático grego. Ele realizou grandes contribuições para a matemática e, na tentativa de compreender o Universo, associou os sólidos a elementos da natureza.

Para ser um sólido platônico, o poliedro precisa ser regular e convexo. Existem apenas cinco sólidos que satisfazem essa definição. São eles: o tetraedro, o cubo ou hexaedro, o octaedro, o icosaedro e o dodecaedro.

A relação feita entre o elemento da natureza e o sólido foi:

tetraedro – fogo

hexaedro – terra

octaedro – ar

icosaedro – água

dodecaedro – Cosmo ou Universo

Para ser um sólido de Platão, o poliedro também precisa ser convexo, todas as faces devem apresentar a mesma quantidade de arestas e todos os vértices devem ser extremidades de uma mesma quantidade de arestas.

Veja também: Paralelepípedos – sólidos geométricos formados por faces planas e poligonais

Tetraedro regular

O tetraedro regular é um poliedro que possui 4 faces, o que justifica o seu nome (tetra = quatro). Todas as suas faces são formadas por triângulos. Ele possui formato de uma pirâmide de base triangular e é conhecido como pirâmide de base regular, já que todas as suas faces são congruentes. Possui um total de 4 faces (em formato de triângulo equilátero), 4 vértices e 6 arestas.

Caso você queira montar seu próprio tetraedro regular, é só baixar e imprimir o PDF aqui.

Cubo ou hexaedro regular

O hexaedro regular possui 6 faces, o que justifica o seu nome (hexa = seis). As suas faces são todas quadradas. Ele é conhecido também como cubo e possui 6 faces, 12 arestas e 8 vértices.

Caso você queira montar seu próprio cubo, é só baixar e imprimir o PDF aqui.

Octaedro

Assim como os anteriores, o nome está ligado ao número de faces, logo o octaedro possui 8 faces. Essas faces possuem formato de triângulo equilátero. O octaedro possui 8 faces, 12 arestas e 6 vértices.

Caso você queira montar seu próprio octaedro, é só baixar e imprimir o PDF aqui.

Icosaedro

O icosaedro possui um total de 20 faces. As suas faces possuem formato de triângulos equiláteros, assim como o octaedro. Ele possui um total de 20 faces, 30 arestas e 12 vértices.

Caso você queira montar seu próprio icosaedro, é só baixar e imprimir o PDF aqui.

Dodecaedro

O dodecaedro é o último dos sólidos de Platão. Possui um total de 12 faces e é considerado o mais harmônico entre os cinco sólidos platônicos. Suas faces possuem formato de pentágonos. Apresenta 12 faces, 30 arestas e 20 vértices.

Caso você queira montar seu próprio dodecaedro, é só baixar e imprimir o PDF aqui.

Acesse também: Cilindro – sólido geométrico formado por duas faces circulares paralelas e em planos distintos

Fórmula de Euler

Os poliedros eulerianos são os poliedros convexos. Euler desenvolveu uma fórmula que relaciona o número de faces (F), número de vértices (V) e o número de arestas (A) em um poliedro convexo. Todos os sólidos de Platão satisfazem a relação de Euler.

V + F = A+ 2

Analisando a fórmula, é possível então calcular o número de vértices a partir do número de faces e de arestas, ou o número de faces, a partir do número de vértices e arestas, enfim, conhecendo dois dos seus elementos, é sempre possível encontrar o terceiro.

Perguntas interessantes