Matemática, perguntado por maryunki19, 10 meses atrás

PFVR ME AJUDEM.Calcule o produto P (x) = (x + 1) . (x 10 − x 9 + x 8 − x 7 + x 6 − x 5 + x 4 − x 3 + x2 − x + 1)

Soluções para a tarefa

Respondido por katarablack
1

Resposta:

P (x) = (x + 1) . ( 10x − 9x + 8x − 7x + 6x − 5x + 4x − 3x + 2x − x + 1)

P (x) = ( x + 1 ) × ( x + 8x - 7x + 6x - 5x + 4x - 3x + 2x - x + 1 )

P ( x ) = ( x + 1 ) × ( x + x + 6x - 5x + 4x - 3x + 2x - x + 1 )

P ( x ) = ( x + 1 ) × ( 8 x - 5x + 4x - 3x + 2x - x + 1 )

P ( x ) = ( x + 1 ) × ( 3x + 4x - 3x + 2x - x + 1 )

P ( x ) = ( x + 1 ) × ( 7x - 3x + 2x - x + 1 )

P ( x ) = ( x + 1 ) × ( 4x + x + 1 )

P ( x ) = ( x + 1 ) × ( 5x + 1 )

P ( x ) = ( x × 5x ) + ( x × 1 ) + ( 1 × 5x) + ( 1 × 1 )

P ( x ) = 5x^2 + x + 5x + 1

P ( x ) = 5x^2 + 6x + 1

Perguntas interessantes