Pessoal me ajuda ae a resolver as equações exponenciais:
a)9^x=
b)8^x=
c)1/9^x=
Soluções para a tarefa
Respondido por
1
a) ![9^{x}=\sqrt[3]{3} 9^{x}=\sqrt[3]{3}](https://tex.z-dn.net/?f=9%5E%7Bx%7D%3D%5Csqrt%5B3%5D%7B3%7D)
![\left(3^{2} \right )^{x}=3^{\,^{1}\!\!\!\diagup\!\!_{3}}\\ \\ 3^{2x}=3^{\,^{1}\!\!\!\diagup\!\!_{3}}\\ \\ 2x=\dfrac{1}{3}\\ \\ x=\dfrac{1}{3\cdot 2}\\ \\ x=\dfrac{1}{6} \left(3^{2} \right )^{x}=3^{\,^{1}\!\!\!\diagup\!\!_{3}}\\ \\ 3^{2x}=3^{\,^{1}\!\!\!\diagup\!\!_{3}}\\ \\ 2x=\dfrac{1}{3}\\ \\ x=\dfrac{1}{3\cdot 2}\\ \\ x=\dfrac{1}{6}](https://tex.z-dn.net/?f=%5Cleft%283%5E%7B2%7D+%5Cright+%29%5E%7Bx%7D%3D3%5E%7B%5C%2C%5E%7B1%7D%5C%21%5C%21%5C%21%5Cdiagup%5C%21%5C%21_%7B3%7D%7D%5C%5C+%5C%5C+3%5E%7B2x%7D%3D3%5E%7B%5C%2C%5E%7B1%7D%5C%21%5C%21%5C%21%5Cdiagup%5C%21%5C%21_%7B3%7D%7D%5C%5C+%5C%5C+2x%3D%5Cdfrac%7B1%7D%7B3%7D%5C%5C+%5C%5C+x%3D%5Cdfrac%7B1%7D%7B3%5Ccdot+2%7D%5C%5C+%5C%5C+x%3D%5Cdfrac%7B1%7D%7B6%7D)
b)![8^{x}=\sqrt[5]{2^{4}} 8^{x}=\sqrt[5]{2^{4}}](https://tex.z-dn.net/?f=8%5E%7Bx%7D%3D%5Csqrt%5B5%5D%7B2%5E%7B4%7D%7D)
![\left(2^{3} \right )^{x}=2^{\,^{4}\!\!\!\diagup\!\!_{5}}\\ \\ 2^{3x}=2^{\,^{4}\!\!\!\diagup\!\!_{5}}\\ \\ 3x=\dfrac{4}{5}\\ \\ x=\dfrac{4}{5\cdot 3}\\ \\ x=\dfrac{4}{15} \left(2^{3} \right )^{x}=2^{\,^{4}\!\!\!\diagup\!\!_{5}}\\ \\ 2^{3x}=2^{\,^{4}\!\!\!\diagup\!\!_{5}}\\ \\ 3x=\dfrac{4}{5}\\ \\ x=\dfrac{4}{5\cdot 3}\\ \\ x=\dfrac{4}{15}](https://tex.z-dn.net/?f=%5Cleft%282%5E%7B3%7D+%5Cright+%29%5E%7Bx%7D%3D2%5E%7B%5C%2C%5E%7B4%7D%5C%21%5C%21%5C%21%5Cdiagup%5C%21%5C%21_%7B5%7D%7D%5C%5C+%5C%5C+2%5E%7B3x%7D%3D2%5E%7B%5C%2C%5E%7B4%7D%5C%21%5C%21%5C%21%5Cdiagup%5C%21%5C%21_%7B5%7D%7D%5C%5C+%5C%5C+3x%3D%5Cdfrac%7B4%7D%7B5%7D%5C%5C+%5C%5C+x%3D%5Cdfrac%7B4%7D%7B5%5Ccdot+3%7D%5C%5C+%5C%5C+x%3D%5Cdfrac%7B4%7D%7B15%7D)
c)![\dfrac{1}{9^{x}}=\sqrt{3} \dfrac{1}{9^{x}}=\sqrt{3}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B9%5E%7Bx%7D%7D%3D%5Csqrt%7B3%7D)
![\dfrac{1}{\left(3^{2} \right )^{x}}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ \dfrac{1}{3^{2x}}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ \left(3^{2x} \right )^{-1}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ 3^{2x\,\cdot \left(-1 \right )}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ 3^{-2x}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ -2x=\dfrac{1}{2}\\ \\ x=\dfrac{1}{2\cdot \left(-2 \right )}\\ \\ x=-\dfrac{1}{4} \dfrac{1}{\left(3^{2} \right )^{x}}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ \dfrac{1}{3^{2x}}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ \left(3^{2x} \right )^{-1}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ 3^{2x\,\cdot \left(-1 \right )}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ 3^{-2x}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ -2x=\dfrac{1}{2}\\ \\ x=\dfrac{1}{2\cdot \left(-2 \right )}\\ \\ x=-\dfrac{1}{4}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B%5Cleft%283%5E%7B2%7D+%5Cright+%29%5E%7Bx%7D%7D%3D3%5E%7B%5C%2C%5E%7B1%7D%5C%21%5C%21%5C%21%5Cdiagup%5C%21%5C%21_%7B2%7D%7D%5C%5C+%5C%5C+%5Cdfrac%7B1%7D%7B3%5E%7B2x%7D%7D%3D3%5E%7B%5C%2C%5E%7B1%7D%5C%21%5C%21%5C%21%5Cdiagup%5C%21%5C%21_%7B2%7D%7D%5C%5C+%5C%5C+%5Cleft%283%5E%7B2x%7D+%5Cright+%29%5E%7B-1%7D%3D3%5E%7B%5C%2C%5E%7B1%7D%5C%21%5C%21%5C%21%5Cdiagup%5C%21%5C%21_%7B2%7D%7D%5C%5C+%5C%5C+3%5E%7B2x%5C%2C%5Ccdot+%5Cleft%28-1+%5Cright+%29%7D%3D3%5E%7B%5C%2C%5E%7B1%7D%5C%21%5C%21%5C%21%5Cdiagup%5C%21%5C%21_%7B2%7D%7D%5C%5C+%5C%5C+3%5E%7B-2x%7D%3D3%5E%7B%5C%2C%5E%7B1%7D%5C%21%5C%21%5C%21%5Cdiagup%5C%21%5C%21_%7B2%7D%7D%5C%5C+%5C%5C+-2x%3D%5Cdfrac%7B1%7D%7B2%7D%5C%5C+%5C%5C+x%3D%5Cdfrac%7B1%7D%7B2%5Ccdot+%5Cleft%28-2+%5Cright+%29%7D%5C%5C+%5C%5C+x%3D-%5Cdfrac%7B1%7D%7B4%7D)
b)
c)
Perguntas interessantes