Matemática, perguntado por diogopds, 1 ano atrás

Pessoal me ajuda ae a resolver as equações exponenciais:
a)9^x=\sqrt[3]{3} b)8^x=\sqrt[5]{2^4} c)1/9^x=\sqrt{3}

Soluções para a tarefa

Respondido por Lukyo
1
a) 9^{x}=\sqrt[3]{3}

\left(3^{2} \right )^{x}=3^{\,^{1}\!\!\!\diagup\!\!_{3}}\\ \\ 3^{2x}=3^{\,^{1}\!\!\!\diagup\!\!_{3}}\\ \\ 2x=\dfrac{1}{3}\\ \\ x=\dfrac{1}{3\cdot 2}\\ \\ x=\dfrac{1}{6}


b) 
8^{x}=\sqrt[5]{2^{4}}

\left(2^{3} \right )^{x}=2^{\,^{4}\!\!\!\diagup\!\!_{5}}\\ \\ 2^{3x}=2^{\,^{4}\!\!\!\diagup\!\!_{5}}\\ \\ 3x=\dfrac{4}{5}\\ \\ x=\dfrac{4}{5\cdot 3}\\ \\ x=\dfrac{4}{15}


c) 
\dfrac{1}{9^{x}}=\sqrt{3}

\dfrac{1}{\left(3^{2} \right )^{x}}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ \dfrac{1}{3^{2x}}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ \left(3^{2x} \right )^{-1}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ 3^{2x\,\cdot \left(-1 \right )}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ 3^{-2x}=3^{\,^{1}\!\!\!\diagup\!\!_{2}}\\ \\ -2x=\dfrac{1}{2}\\ \\ x=\dfrac{1}{2\cdot \left(-2 \right )}\\ \\ x=-\dfrac{1}{4}

Perguntas interessantes