Pessoal ajuda nessa ai urgente
Anexos:
![](https://pt-static.z-dn.net/files/d78/4327a148ce4f08f04f2e34692740738e.jpg)
Soluções para a tarefa
Respondido por
1
Propriedades utilizadas:
![log_{b}~a=c<=>b^{c}=a log_{b}~a=c<=>b^{c}=a](https://tex.z-dn.net/?f=log_%7Bb%7D%7Ea%3Dc%26lt%3B%3D%26gt%3Bb%5E%7Bc%7D%3Da)
![log_{b}~(x/y)=log_{b}~x-log_{b}~y log_{b}~(x/y)=log_{b}~x-log_{b}~y](https://tex.z-dn.net/?f=log_%7Bb%7D%7E%28x%2Fy%29%3Dlog_%7Bb%7D%7Ex-log_%7Bb%7D%7Ey)
![log_{b}~a^{n}=n*log_{b}~a log_{b}~a^{n}=n*log_{b}~a](https://tex.z-dn.net/?f=log_%7Bb%7D%7Ea%5E%7Bn%7D%3Dn%2Alog_%7Bb%7D%7Ea)
Mudança de base (b pra c):![log_{b}~a=log_{c}~a/log_{c}~b log_{b}~a=log_{c}~a/log_{c}~b](https://tex.z-dn.net/?f=log_%7Bb%7D%7Ea%3Dlog_%7Bc%7D%7Ea%2Flog_%7Bc%7D%7Eb)
_______________________
![60^{a}=3\\log~60^{a}=log~{3}\\a*log~60=log~3\\a=log~3/log~60\\a=log_{60}~3 60^{a}=3\\log~60^{a}=log~{3}\\a*log~60=log~3\\a=log~3/log~60\\a=log_{60}~3](https://tex.z-dn.net/?f=60%5E%7Ba%7D%3D3%5C%5Clog%7E60%5E%7Ba%7D%3Dlog%7E%7B3%7D%5C%5Ca%2Alog%7E60%3Dlog%7E3%5C%5Ca%3Dlog%7E3%2Flog%7E60%5C%5Ca%3Dlog_%7B60%7D%7E3)
![60^{b}=5\\log~60^{b}=log~5\\b*log~60=log~5\\b=log~5/log~60\\b=log_{60}~5 60^{b}=5\\log~60^{b}=log~5\\b*log~60=log~5\\b=log~5/log~60\\b=log_{60}~5](https://tex.z-dn.net/?f=60%5E%7Bb%7D%3D5%5C%5Clog%7E60%5E%7Bb%7D%3Dlog%7E5%5C%5Cb%2Alog%7E60%3Dlog%7E5%5C%5Cb%3Dlog%7E5%2Flog%7E60%5C%5Cb%3Dlog_%7B60%7D%7E5)
_______________________
Chamando o expoente de 12 de x, temos:
![x=(1-a-b)/[2(1-b)]\\x=(1-log_{60}~3-log_{60}~5)/[2(1-log_{60}~5)]\\ x=(log_{60}~60-log_{60}~3-log_{60}~5)/[2(log_{60}~60-log_{60}~5)]\\x=(log_{60}~[60/(3*5)])/[2(log_{60}~[60/5])]\\ x=(log_{60}~4)/(2*log_{60}~12)\\x=(log_{60}~2^{2})/(2*log_{60}~12)\\ x=(2*log_{60}~2)/(2*log_{60}~12)\\x=log_{60}~2/log_{60}~12 x=(1-a-b)/[2(1-b)]\\x=(1-log_{60}~3-log_{60}~5)/[2(1-log_{60}~5)]\\ x=(log_{60}~60-log_{60}~3-log_{60}~5)/[2(log_{60}~60-log_{60}~5)]\\x=(log_{60}~[60/(3*5)])/[2(log_{60}~[60/5])]\\ x=(log_{60}~4)/(2*log_{60}~12)\\x=(log_{60}~2^{2})/(2*log_{60}~12)\\ x=(2*log_{60}~2)/(2*log_{60}~12)\\x=log_{60}~2/log_{60}~12](https://tex.z-dn.net/?f=x%3D%281-a-b%29%2F%5B2%281-b%29%5D%5C%5Cx%3D%281-log_%7B60%7D%7E3-log_%7B60%7D%7E5%29%2F%5B2%281-log_%7B60%7D%7E5%29%5D%5C%5C+x%3D%28log_%7B60%7D%7E60-log_%7B60%7D%7E3-log_%7B60%7D%7E5%29%2F%5B2%28log_%7B60%7D%7E60-log_%7B60%7D%7E5%29%5D%5C%5Cx%3D%28log_%7B60%7D%7E%5B60%2F%283%2A5%29%5D%29%2F%5B2%28log_%7B60%7D%7E%5B60%2F5%5D%29%5D%5C%5C+x%3D%28log_%7B60%7D%7E4%29%2F%282%2Alog_%7B60%7D%7E12%29%5C%5Cx%3D%28log_%7B60%7D%7E2%5E%7B2%7D%29%2F%282%2Alog_%7B60%7D%7E12%29%5C%5C+x%3D%282%2Alog_%7B60%7D%7E2%29%2F%282%2Alog_%7B60%7D%7E12%29%5C%5Cx%3Dlog_%7B60%7D%7E2%2Flog_%7B60%7D%7E12)
Fazendo o caminho contrário da mudança de base (mudando a base pra 12):
![log_{60}~2/log_{60}~12=log_{12}~2 log_{60}~2/log_{60}~12=log_{12}~2](https://tex.z-dn.net/?f=log_%7B60%7D%7E2%2Flog_%7B60%7D%7E12%3Dlog_%7B12%7D%7E2)
![x=log_{12}~2 x=log_{12}~2](https://tex.z-dn.net/?f=x%3Dlog_%7B12%7D%7E2)
_______________________
![2^{x}=2^{log_{12}~2} 2^{x}=2^{log_{12}~2}](https://tex.z-dn.net/?f=2%5E%7Bx%7D%3D2%5E%7Blog_%7B12%7D%7E2%7D)
Vamos trabalhar no expoente novamente:
![log_{12}~2=x log_{12}~2=x](https://tex.z-dn.net/?f=log_%7B12%7D%7E2%3Dx)
Usando a propriedade![log_{b}~a=c<=>b^{c}=a log_{b}~a=c<=>b^{c}=a](https://tex.z-dn.net/?f=log_%7Bb%7D%7Ea%3Dc%26lt%3B%3D%26gt%3Bb%5E%7Bc%7D%3Da)
![log_{12}~2=x<=>12^{x}=2 log_{12}~2=x<=>12^{x}=2](https://tex.z-dn.net/?f=log_%7B12%7D%7E2%3Dx%26lt%3B%3D%26gt%3B12%5E%7Bx%7D%3D2)
Voltando:
![12^{x}=12^{log_{12}~2}\\12^{x}=2 12^{x}=12^{log_{12}~2}\\12^{x}=2](https://tex.z-dn.net/?f=12%5E%7Bx%7D%3D12%5E%7Blog_%7B12%7D%7E2%7D%5C%5C12%5E%7Bx%7D%3D2)
Mudança de base (b pra c):
_______________________
_______________________
Chamando o expoente de 12 de x, temos:
Fazendo o caminho contrário da mudança de base (mudando a base pra 12):
_______________________
Vamos trabalhar no expoente novamente:
Usando a propriedade
Voltando:
jaruaba20:
Muitoooo obrigadooooo ,
Perguntas interessantes