Matemática, perguntado por 959916409134, 5 meses atrás

Pesquise sobre as Propriedades de Potência e diga quais e quantas são ?​

Soluções para a tarefa

Respondido por geicilanesilva
1

Resposta:

1ª propriedade – Multiplicação de potências de mesma base

Para simplificar a multiplicação de potências de mesma base, conserva-se a base e somam-se os expoentes.

an · am= an+m

Exemplo 1:

54· 5² = 5·5·5·5·5·5 = 56

Logo, temos que:

54· 5² = 54+2=56

Se necessário, é possível encontrar a potência de 56 realizando a multiplicação sucessiva de 5 por ele mesmo 6 vezes, porém, no uso da propriedade, o interesse é representar a multiplicação de duas ou mais potências como uma potência só.

Exemplo 2:

2³ · 25 · 22=23+5+2=210

2ª propriedade – Divisão de potências de mesma base

Na divisão de potências de mesma base, conservamos a base e subtraímos o expoente do numerador pelo expoente do denominador.

an : am= an - m

Exemplo 1:

Logo, temos que:

28 : 25 = 28-5 = 2³

Note que realizar a simplificação é bem mais prático do que resolver essas potências de forma separada e depois fazer a divisão. Como ressaltado anteriormente, a intenção das propriedades é simplificar e facilitar as contas com potências.

Explicação passo-a-passo:

3ª propriedade – Potência de potência

Ao calcular a potência de uma potência, podemos conservar a base e multiplicar os expoentes.

(am)n=am · n

Exemplo 1:

(5³)² = (5 · 5 · 5)² = (5 · 5 · 5) · (5 · 5 · 5) = 56

Logo, temos que:

(5³)² =53 · 2 = 56

Assim como as duas propriedades anteriores, a aplicação dessa propriedade ajuda a realizar essa operação de forma mais rápida

Exemplo 2

(45)-3 = 45 · (-3) = 4-15

4ª propriedade – Potência de um produto

Dado um produto de dois números reais elevados a um expoente, podemos elevar cada um dos fatores a esse expoente.

(a · b)n = an · bn

Exemplo:

(2 · 4)3=(2 · 4)(2 · 4)(2 · 4) = 2 · 2 · 2 · 4 · 4 · 4 = 23 · 43

Logo, temos que:

(2 · 4)3 = 23 · 43

5ª propriedade – Potência do quociente

Conhecida como potência de um quociente e análoga à propriedade anterior, sempre que houver uma potência de um quociente, podemos calcular a potência do dividendo e a potência do divisor.

(a : b)n = an : bn

Exemplo:

(6 : 4)² = (6 : 4) · (6 : 4) = 6² · 4²

Logo, temos que:

(6 : 4)² =6² : 4²


959916409134: obrigado
geicilanesilva: de nada
Perguntas interessantes