perimetro 104 do retangulo qual sua área 3x comprimento e 2x altura
Soluções para a tarefa
Respondido por
1
Olá Vivian,
Á área de um retângulo igual ao produto de seus lados. Nesse caso temos:
![\mathsf{A=3x\cdot2x=6x^2} \mathsf{A=3x\cdot2x=6x^2}](https://tex.z-dn.net/?f=%5Cmathsf%7BA%3D3x%5Ccdot2x%3D6x%5E2%7D)
Já o perímetro é a soma de dos os lados de uma figura geométrica, nesse caso:
![\mathsf{3x+3x+2x+2x=104\Rightarrow10x=104\Rightarrow x=\dfrac{104:2}{10:2} \Rightarrow x=\dfrac{52}{5}} \mathsf{3x+3x+2x+2x=104\Rightarrow10x=104\Rightarrow x=\dfrac{104:2}{10:2} \Rightarrow x=\dfrac{52}{5}}](https://tex.z-dn.net/?f=%5Cmathsf%7B3x%2B3x%2B2x%2B2x%3D104%5CRightarrow10x%3D104%5CRightarrow+x%3D%5Cdfrac%7B104%3A2%7D%7B10%3A2%7D+%5CRightarrow+x%3D%5Cdfrac%7B52%7D%7B5%7D%7D)
Agora basta substituir o valor de x na equação da área do retângulo:
![\mathsf{A=6\cdot\Big(\dfrac{52}{5}\Big)^2\Rightarrow A=6\cdot\Big(\dfrac{2.704}{25}\Big)\Rightarrow \boxed{\mathsf{A=\dfrac{16.224}{25}~u^2}}} \mathsf{A=6\cdot\Big(\dfrac{52}{5}\Big)^2\Rightarrow A=6\cdot\Big(\dfrac{2.704}{25}\Big)\Rightarrow \boxed{\mathsf{A=\dfrac{16.224}{25}~u^2}}}](https://tex.z-dn.net/?f=%5Cmathsf%7BA%3D6%5Ccdot%5CBig%28%5Cdfrac%7B52%7D%7B5%7D%5CBig%29%5E2%5CRightarrow+A%3D6%5Ccdot%5CBig%28%5Cdfrac%7B2.704%7D%7B25%7D%5CBig%29%5CRightarrow+%5Cboxed%7B%5Cmathsf%7BA%3D%5Cdfrac%7B16.224%7D%7B25%7D%7Eu%5E2%7D%7D%7D)
Dúvidas? comente
Á área de um retângulo igual ao produto de seus lados. Nesse caso temos:
Já o perímetro é a soma de dos os lados de uma figura geométrica, nesse caso:
Agora basta substituir o valor de x na equação da área do retângulo:
Dúvidas? comente
vivian160:
vou deixar pra fazer amanhã já não tô com cabeça mais
Respondido por
0
P= 104 P= 2 c + 2 h 104 = 2(3x)+ 2(2x)
104 = 6x + 4x
104 = 10x
x = 104/10
x = 10,4 u
A = (3X) . (2X)
A = (3 . 10,4) . (2 .10,4)
A = 31,2 . 20,8
A = 648,96 u²
104 = 6x + 4x
104 = 10x
x = 104/10
x = 10,4 u
A = (3X) . (2X)
A = (3 . 10,4) . (2 .10,4)
A = 31,2 . 20,8
A = 648,96 u²
Perguntas interessantes
Matemática,
11 meses atrás
Física,
11 meses atrás
História,
11 meses atrás
Sociologia,
1 ano atrás
Matemática,
1 ano atrás