Matemática, perguntado por xelonio, 5 meses atrás

PERGUNTA 1

MEDIDAS DE TENDÊNCIA CENTRAL: MÉDIA, MEDIANA E MODA NOS ENSAIOS DE ENGENHARIA

Nos conjuntos amostrais obtidos em Laboratório, é preciso entender o comportamento dos dados obtidos.

Todo Ensaio de Engenharia é realizado com uma amostra, que representa o produto que está saindo de uma linha de produção para ser entregue ao Mercado.

Não é possível, em alguns casos, ensaiar todos os materiais produzidos em uma linha de produção. Dessa forma, tomam-se algumas amostras para a realização dos ensaios, e se espera que elas consigam representar o comportamento dos fenômenos.

Ao se ensaiar amostras, o Engenheiro busca que os valores obtidos nos ensaios estejam próximos entre si, para indicar que o cenário está controlado.

Caso se façam ensaios, e eles apresentem uma variação muito grande, pode significar que a produção está despadronizada, ou que os ensaios foram realizados de forma incorreta.

Dessa forma, a adoção dos procedimentos de ensaio é muito importante para garantir que todos os ensaios estão cumprindo as mesmas características.

Na Estatística Descritiva, existem ferramentas que permitem ao Engenheiro compreender o comportamento de determinada amostra.

São elas: a média, a mediana e a moda. Vamos entender a diferença entre elas e, depois, como executá-las no Excel.

A Média é calculada por meio da soma de todos os valores de um conjunto de dados, dividindo-se pelo número de elementos que compõem esse conjunto.

É uma medida muito usada em diversos campos da Engenharia. Sua sintaxe é:


Onde:

- x1, x2,..., xn: valores dos dados;

- n: número de elementos do conjunto de dados.

A média é uma medida de tendência central adequada em situações em que os valores envolvidos possuem certa uniformidade, pois, ao contrário, o valor obtido não vai ter grande relação com os pontos isolados da amostra.

A Mediana, por sua vez, representa o valor central de um conjunto de dados, dividindo a amostra em duas partes iguais.

Para a obtenção do valor da mediana, é necessário colocar os valores em ordem crescente ou decrescente. Quando o número de elementos de um conjunto for par, a mediana é encontrada pela média dos dois valores centrais. Assim, esses valores são somados e divididos por dois.

Para amostras que forem homogêneas, o valor da média e da mediana é parecido. Entretanto, para amostras heterogêneas, esse valor não irá coincidir.

A Moda, por fim, representa o valor mais frequente de um conjunto de dados. Assim, para defini-la, basta observar a frequência com que os valores aparecem. O valor que mais se repetir é denominado moda.

Determinadas amostras podem ter mais de um valor que se repete. Nesse caso, a amostra pode ser chamada de bimodal. Fisicamente, a Moda pode significar que um determinado valor se repete, e que caracteriza a amostra. Em amostras homogêneas, está próximo da média e da mediana.

Tomando os nossos resultados de ensaio de tração do exercício anterior, vamos aprender a determinar a média, a mediana e a moda. Para isso, vamos usar o Excel.

No Microsoft Excel, a Média é terminada pela sintaxe =Média(X1, X2, Xn), onde X1, X2 e Xn são os valores que estão sendo analisados, que podem ser células isoladas ou, ainda, um intervalo.

A Mediana é determinada no Excel pela sintaxe =Med(X1, X2, Xn), onde X1, X2 e Xn são os valores que estão sendo analisados, que podem ser células isoladas ou, ainda, um intervalo.

A Moda, por sua vez, pode ser determinada pela sintaxe =Modo.Único(X1, X2, XN) para amostras monomodais, ou pela sintaxe =Modo.Mult(X1, X2 e Xn), para amostras bimodais, onde X1, X2 e Xn são os valores que estão sendo analisados, que podem ser células isoladas ou, ainda, um intervalo.

Considerando a Tabela já desenvolvida no exercício anterior, vamos determinar a Média, a Mediana e Moda Monomodal (Modo.Único).

Crie linhas, na parte inferior da Tabela, para determinar e salvar os valores que deverão ser entregues no final da trilha de aprendizagem



CP

Tensão de Escoamento (MPa)

1

500

2

485

3

490

4

505

5

520

6

495

7

480

8

500

9

505

10

520

Média



Mediana



Moda





O procedimento para desenvolver o exercício é o seguinte:



Tome como base a Tabela do exercício anterior;
Crie 3 linhas, para Média, Mediana e Moda na parte inferior da Tabela;
Utilizando as sintaxes apresentadas, faça o cálculo desses valores para a Tabela fornecida, utilizando o Excel.
Salve seu arquivo.
Os valores obtidos, respectivamente, para Média, Mediana e Moda para a amostra fornecida, após lançamento no Excel, foram:









a.
500, 500 e 500.



b.
503, 501 e 501.



c.
500, 501 e 501.

d.
500, 500 e 501.



e.
502, 501 e 500.

Soluções para a tarefa

Respondido por otonielrodrigues896
6

Resposta:

não é nem D é nem E errei as duas


xelonio: Resposta certa é 500, 500 e 500.
mylenafguedes: 500, 500 e 500.
ilmarramos: ok
jcmullerbr: Confirmado: 500, 500 e 500.
Perguntas interessantes